Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tuning Geometric Conformations of Curved DNA Structures by Controlling Positions of Nicks

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1801))

  • 960 Accesses

Abstract

DNA origami is one of the powerful techniques that utilize DNA as building blocks to synthesize nanostructures. Traditionally, through introducing different numbers of insertions and deletions of base pairs in DNA helices, the in-plane bending angle of curved DNA structures could be roughly tuned. Here, we explored a strategy that used the position patterns of nicks in staple strands to tune the geometric conformation of curved DNA origami structures, including in-plane bending, out-of-plane bending, and twisting angles. When the structure adopted different patterns of nicks positions, great difference appeared in the geometric properties. Further, by combining subunits of different nicks position patterns, the bending and twisting of the combined structure was effectively tuned. The strategy increases the design accuracy of curved DNA origami structures and expands the toolbox for designing DNA structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pinheiro, A.V., Han, D., Shih, W.M., Yan, H.: Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6(12), 763–772 (2011)

    Article  Google Scholar 

  2. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  3. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)

    Article  Google Scholar 

  4. Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)

    Article  Google Scholar 

  5. Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y., Yan, H.: DNA origami with complex curvatures in three-dimensional space. Science 332(6027), 342–346 (2011)

    Article  Google Scholar 

  6. Dietz, H., Douglas, S.M., Shih, W.M.: Folding DNA into twisted and curved nanoscale shapes. Science 325(5941), 725–730 (2009)

    Article  Google Scholar 

  7. Yang, Y., et al.: Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8(5), 476–483 (2016)

    Article  Google Scholar 

  8. Zhang, Z., Yang, Y., Pincet, F., Llaguno, M.C., Lin, C.: Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem. 9(7), 653–659 (2017)

    Article  Google Scholar 

  9. Urban, M.J., et al.: Plasmonic toroidal metamolecules assembled by DNA origami. J. Am. Chem. Soc. 138(17), 5495–5498 (2016)

    Article  Google Scholar 

  10. Franquelim, H.G., Khmelinskaia, A., Sobczak, J.-P., Dietz, H., Schwille, P.: Membrane sculpting by curved DNA origami scaffolds. Nat. Commun. 9(1), 811 (2018)

    Article  Google Scholar 

  11. Ketterer, P., et al.: DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex. Nat. Commun. 9(1), 902 (2018)

    Article  Google Scholar 

  12. Kim, Y.-J., Lee, C., Lee, J.G., Kim, D.-N.: Configurational design of mechanical perturbation for fine control of twisted DNA origami structures. ACS Nano 13(6), 6348–6355 (2019)

    Article  Google Scholar 

  13. Xie, C., Hu, Y., Chen, Z., Chen, K., Pan, L.: Tuning curved DNA origami structures through mechanical design and chemical adducts. Nanotechnology 33(40), 405603 (2022)

    Article  Google Scholar 

  14. Hays, J.B., Zimm, B.H.: Flexibility and stiffness in nicked DNA. J. Mol. Biol. 48(2), 297–317 (1970)

    Article  Google Scholar 

  15. Jung, W.-H., Chen, E., Veneziano, R., Gaitanaros, S., Chen, Y.: Stretching DNA origami: Effect of nicks and Holliday junctions on the axial stiffness. Nucleic Acids Res. 48(21), 12407–12414 (2020)

    Article  Google Scholar 

  16. Šulc, P., Romano, F., Ouldridge, T.E., Rovigatti, L., Doye, J.P.K., Louis, A.A.: Sequence-dependent thermodynamics of a coarse-grained DNA model. J. Chem. Phys. 137(13), 135101 (2012)

    Article  Google Scholar 

  17. Snodin, B.E.K., et al.: Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J. Chem. Phys. 142(23), 234901 (2015)

    Article  Google Scholar 

  18. Sharma, R., Schreck, J.S., Romano, F., Louis, A.A., Doye, J.P.K.: Characterizing the motion of jointed DNA nanostructures using a coarse-grained model. ACS Nano 11(12), 12426–12435 (2017)

    Article  Google Scholar 

  19. Snodin, B.E.K., Schreck, J.S., Romano, F., Louis, A.A., Doye, J.P.K.: Coarse-grained modelling of the structural properties of DNA origami. Nucleic Acids Res. 47(3), 1585–1597 (2019)

    Article  Google Scholar 

  20. Benson, E., Lolaico, M., Tarasov, Y., Gådin, A., Högberg, B.: Evolutionary refinement of DNA nanostructures using coarse-grained molecular dynamics simulations. ACS Nano 13(11), 12591–12598 (2019)

    Article  Google Scholar 

  21. Kim, D.N., Kilchherr, F., Dietz, H., Bathe, M.: Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40(7), 2862–2868 (2012)

    Article  Google Scholar 

  22. Castro, C.E., et al.: A primer to scaffolded DNA origami. Nat. Methods 8(3), 221–229 (2011)

    Article  Google Scholar 

  23. Pan, K., Kim, D.-N., Zhang, F., Adendorff, M.R., Yan, H., Bathe, M.: Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nat. Commun. 5(1), 5578 (2014)

    Article  Google Scholar 

  24. Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M., Shih, W.M.: Rapid prototyping of 3D DNA-origami shapes with Cadnano. Nucleic Acids Res. 37(15), 5001–5006 (2009)

    Article  Google Scholar 

  25. Poppleton, E., Bohlin, J., Matthies, M., Sharma, S., Zhang, F., Sulc, P.: Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation. Nucleic Acids Res. 48(12), e72 (2020)

    Article  Google Scholar 

  26. Bohlin, J., et al.: Design and simulation of DNA, RNA and hybrid protein-nucleic acid nanostructures with oxView. Nat. Protoc. 17(8), 1762–1788 (2022)

    Article  Google Scholar 

  27. Pan, L., Wang, Z., Li, Y., Xu, F., Zhang, Q., Zhang, C.: Nicking enzyme-controlled toehold regulation for DNA logic circuits. Nanoscale 9(46), 18223–18228 (2017)

    Article  Google Scholar 

  28. Jain, P.K., et al.: Development of light-activated CRISPR using guide RNAs with photocleavable protectors. Angew. Chem. Int. Ed. 55(40), 12440–12444 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

The work was sponsored by the National Natural Science Foundation of China (62172171), Zhejiang Lab (NO. 2021RD0AB03), the Fundamental Research Funds for the Central Universities (HUST: 2019kfyXMBZ056), and the Science and Technology Project of Hebei Education Department (ZD2022098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linqiang Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, C., Hu, Y., Chen, K., Chen, Z., Pan, L. (2023). Tuning Geometric Conformations of Curved DNA Structures by Controlling Positions of Nicks. In: Pan, L., Zhao, D., Li, L., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2022. Communications in Computer and Information Science, vol 1801. Springer, Singapore. https://doi.org/10.1007/978-981-99-1549-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1549-1_51

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1548-4

  • Online ISBN: 978-981-99-1549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics