Abstract
DNA origami is one of the powerful techniques that utilize DNA as building blocks to synthesize nanostructures. Traditionally, through introducing different numbers of insertions and deletions of base pairs in DNA helices, the in-plane bending angle of curved DNA structures could be roughly tuned. Here, we explored a strategy that used the position patterns of nicks in staple strands to tune the geometric conformation of curved DNA origami structures, including in-plane bending, out-of-plane bending, and twisting angles. When the structure adopted different patterns of nicks positions, great difference appeared in the geometric properties. Further, by combining subunits of different nicks position patterns, the bending and twisting of the combined structure was effectively tuned. The strategy increases the design accuracy of curved DNA origami structures and expands the toolbox for designing DNA structures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pinheiro, A.V., Han, D., Shih, W.M., Yan, H.: Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6(12), 763–772 (2011)
Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)
Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)
Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)
Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y., Yan, H.: DNA origami with complex curvatures in three-dimensional space. Science 332(6027), 342–346 (2011)
Dietz, H., Douglas, S.M., Shih, W.M.: Folding DNA into twisted and curved nanoscale shapes. Science 325(5941), 725–730 (2009)
Yang, Y., et al.: Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8(5), 476–483 (2016)
Zhang, Z., Yang, Y., Pincet, F., Llaguno, M.C., Lin, C.: Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem. 9(7), 653–659 (2017)
Urban, M.J., et al.: Plasmonic toroidal metamolecules assembled by DNA origami. J. Am. Chem. Soc. 138(17), 5495–5498 (2016)
Franquelim, H.G., Khmelinskaia, A., Sobczak, J.-P., Dietz, H., Schwille, P.: Membrane sculpting by curved DNA origami scaffolds. Nat. Commun. 9(1), 811 (2018)
Ketterer, P., et al.: DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex. Nat. Commun. 9(1), 902 (2018)
Kim, Y.-J., Lee, C., Lee, J.G., Kim, D.-N.: Configurational design of mechanical perturbation for fine control of twisted DNA origami structures. ACS Nano 13(6), 6348–6355 (2019)
Xie, C., Hu, Y., Chen, Z., Chen, K., Pan, L.: Tuning curved DNA origami structures through mechanical design and chemical adducts. Nanotechnology 33(40), 405603 (2022)
Hays, J.B., Zimm, B.H.: Flexibility and stiffness in nicked DNA. J. Mol. Biol. 48(2), 297–317 (1970)
Jung, W.-H., Chen, E., Veneziano, R., Gaitanaros, S., Chen, Y.: Stretching DNA origami: Effect of nicks and Holliday junctions on the axial stiffness. Nucleic Acids Res. 48(21), 12407–12414 (2020)
Šulc, P., Romano, F., Ouldridge, T.E., Rovigatti, L., Doye, J.P.K., Louis, A.A.: Sequence-dependent thermodynamics of a coarse-grained DNA model. J. Chem. Phys. 137(13), 135101 (2012)
Snodin, B.E.K., et al.: Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J. Chem. Phys. 142(23), 234901 (2015)
Sharma, R., Schreck, J.S., Romano, F., Louis, A.A., Doye, J.P.K.: Characterizing the motion of jointed DNA nanostructures using a coarse-grained model. ACS Nano 11(12), 12426–12435 (2017)
Snodin, B.E.K., Schreck, J.S., Romano, F., Louis, A.A., Doye, J.P.K.: Coarse-grained modelling of the structural properties of DNA origami. Nucleic Acids Res. 47(3), 1585–1597 (2019)
Benson, E., Lolaico, M., Tarasov, Y., Gådin, A., Högberg, B.: Evolutionary refinement of DNA nanostructures using coarse-grained molecular dynamics simulations. ACS Nano 13(11), 12591–12598 (2019)
Kim, D.N., Kilchherr, F., Dietz, H., Bathe, M.: Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40(7), 2862–2868 (2012)
Castro, C.E., et al.: A primer to scaffolded DNA origami. Nat. Methods 8(3), 221–229 (2011)
Pan, K., Kim, D.-N., Zhang, F., Adendorff, M.R., Yan, H., Bathe, M.: Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nat. Commun. 5(1), 5578 (2014)
Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M., Shih, W.M.: Rapid prototyping of 3D DNA-origami shapes with Cadnano. Nucleic Acids Res. 37(15), 5001–5006 (2009)
Poppleton, E., Bohlin, J., Matthies, M., Sharma, S., Zhang, F., Sulc, P.: Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation. Nucleic Acids Res. 48(12), e72 (2020)
Bohlin, J., et al.: Design and simulation of DNA, RNA and hybrid protein-nucleic acid nanostructures with oxView. Nat. Protoc. 17(8), 1762–1788 (2022)
Pan, L., Wang, Z., Li, Y., Xu, F., Zhang, Q., Zhang, C.: Nicking enzyme-controlled toehold regulation for DNA logic circuits. Nanoscale 9(46), 18223–18228 (2017)
Jain, P.K., et al.: Development of light-activated CRISPR using guide RNAs with photocleavable protectors. Angew. Chem. Int. Ed. 55(40), 12440–12444 (2016)
Acknowledgment
The work was sponsored by the National Natural Science Foundation of China (62172171), Zhejiang Lab (NO. 2021RD0AB03), the Fundamental Research Funds for the Central Universities (HUST: 2019kfyXMBZ056), and the Science and Technology Project of Hebei Education Department (ZD2022098).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xie, C., Hu, Y., Chen, K., Chen, Z., Pan, L. (2023). Tuning Geometric Conformations of Curved DNA Structures by Controlling Positions of Nicks. In: Pan, L., Zhao, D., Li, L., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2022. Communications in Computer and Information Science, vol 1801. Springer, Singapore. https://doi.org/10.1007/978-981-99-1549-1_51
Download citation
DOI: https://doi.org/10.1007/978-981-99-1549-1_51
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-1548-4
Online ISBN: 978-981-99-1549-1
eBook Packages: Computer ScienceComputer Science (R0)