Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Interactive Query Differential Privacy Protection Model Based on Big Data Analysis

  • Conference paper
  • First Online:
Ubiquitous Security (UbiSec 2022)

Abstract

The problem of information leakage is becoming more and more serious, and how to effectively protect the security of personal privacy information has become an urgent problem at present. To this end, this paper proposes an interactive query differential privacy protection model based on big data analysis. The model is based on the irrelevance processing of differential privacy association rules to find out the hidden association information among trajectory data sets. The model uses the shared prefix method to de-compress the trajectory dataset deeply. The model constructs prefix trees to clarify useful information and remove redundant trajectory data. The model constructs a parallel gradient descent matrix decomposition algorithm based on the low-rank mechanism and alternating direction multiplier method to remove the load matrix built from the initial results and decompose the corresponding irrelevant load matrix. The model then takes reasonable values according to the user authority level to limit the privacy budget maximum. The model uses Laplace’s principle to add the determined reasonable noise to the differential privacy trajectory data, reduce and delete the irrelevant attribute trajectory data, and finally feed the query results to the user. Through simulation and comparison experiments, we conclude that the proposed model can make the privacy information available to the highest degree and minimize the success probability of stealers, and thus the differential privacy track data can be protected to the best effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ardagna, C.A., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Samarati, P.: Location privacy protection through obfuscation-based techniques. In: Barker, S., Ahn, G.-J. (eds.) DBSec 2007. LNCS, vol. 4602, pp. 47–60. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73538-0_4

    Chapter  Google Scholar 

  2. Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries in mobile environments with privacygrid. In: Proceedings of the 17th international conference on World Wide Web, pp. 237–246 (2008)

    Google Scholar 

  3. Bertrand, F., Boffi, D., de Diego, G.: Convergence analysis of the scaled boundary finite element method for the Laplace equation. Adv. Comput. Math. 47(3), 1–17 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  5. Dolgopolik, M.V.: The alternating direction method of multipliers for finding the distance between ellipsoids. Appl. Math. Comput. 409, 126387 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Dong, J., Durfee, D., Rogers, R.: Optimal differential privacy composition for exponential mechanisms. In: International Conference on Machine Learning, pp. 2597–2606. PMLR (2020)

    Google Scholar 

  7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  8. Furtat, I.B., Nekhoroshikh, A.N., Gushchin, P.A.: Robust stabilization of linear plants in the presence of disturbances and high-frequency measurement noise. Autom. Remote. Control. 82(7), 1248–1261 (2021)

    Article  MATH  Google Scholar 

  9. Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity: architecture and algorithms. IEEE Trans. Mob. Comput. 7(1), 1–18 (2007)

    Article  Google Scholar 

  10. Hui, H., Zhou, C., Xu, S., Lin, F.: A novel secure data transmission scheme in industrial internet of things. China Commun. 17(1), 73–88 (2020)

    Article  Google Scholar 

  11. Huo, Z., Meng, X.: A survey of trajectory privacy-preserving techniques. Chin. J. Comput. 34(10), 1820–1830 (2011)

    Article  Google Scholar 

  12. Husnoo, M.A., Anwar, A., Chakrabortty, R.K., Doss, R., Ryan, M.J.: Differential privacy for IoT-enabled critical infrastructure: a comprehensive survey. IEEE Access 9, 153276–153304 (2021)

    Article  Google Scholar 

  13. Jia, O., Jian, Y., Shaopeng, L., Yuba, L.: An effective differential privacy transaction data publication strategy. J. Comput. Res. Dev. 51(10), 2195–2205 (2014)

    Google Scholar 

  14. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: 22nd International Conference on Data Engineering (ICDE 2006), p. 25. IEEE (2006)

    Google Scholar 

  15. Li, C., Hay, M., Rastogi, V., Miklau, G., McGregor, A.: Optimizing linear counting queries under differential privacy. In: Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 123–134 (2010)

    Google Scholar 

  16. Liu, F., Hua, K.A., Cai, Y.: Query l-diversity in location-based services. In: 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, pp. 436–442. IEEE (2009)

    Google Scholar 

  17. Liu, L.: From data privacy to location privacy: models and algorithms. In: VLDB, vol. 7, pp. 1429–1430. Citeseer (2007)

    Google Scholar 

  18. Sarwar, S.M., Bonab, H., Allan, J.: A multi-task architecture on relevance-based neural query translation. arXiv preprint arXiv:1906.06849 (2019)

  19. Sharma, J., Kim, D., Lee, A., Seo, D.: On differential privacy-based framework for enhancing user data privacy in mobile edge computing environment. IEEE Access 9, 38107–38118 (2021)

    Article  Google Scholar 

  20. Wangjie, L., Xing, Z., Guanghui, C., Shuai, L., Qingyun, Z.: Hierarchical data fusion publishing mechanism based on differential privacy protection. J. Chin. Comput. Syst. 10, 2252–2256 (2019)

    Google Scholar 

  21. Wong, R.C.W., Li, J., Fu, A.W.C., Wang, K.: (\(\alpha \), k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 754–759 (2006)

    Google Scholar 

  22. Yang, Y., Ding, J., Li, H., Jia, L., You, J., Jiang, Y.: A spark-based frequent patterns mining algorithm for uncertain datasets. Inf. Control 48(3), 257–264 (2019)

    Google Scholar 

  23. Yuan, J., Tian, Y.: Practical privacy-preserving mapreduce based k-means clustering over large-scale dataset. IEEE Trans. Cloud Comput. 7(2), 568–579 (2017)

    Article  Google Scholar 

  24. Yuxiang, F., Yongbin, Q., Guowei, S.: Sensitive data privacy protection method based on transfer learning. J. Data Acquisit. Process. 34(3), 422–431 (2019)

    Google Scholar 

  25. Zhang, S., Wang, G., Bhuiyan, M.Z.A., Liu, Q.: A dual privacy preserving scheme in continuous location-based services. IEEE Internet Things J. 5(5), 4191–4200 (2018)

    Article  Google Scholar 

  26. Zhang, X., Meng, X.: Differential privacy in data publication and analysis. Chin. J. Comput. 4, 927–949 (2014)

    Google Scholar 

  27. Zhou, S., Lyu, Z., Ling, C., Wang, Y.: Meta-is-AK algorithm for estimating global reliability sensitivity. Acta Aeronaut. Astronaut. Sin. 41(1), 164–173 (2020)

    Google Scholar 

  28. Zou, Y., Peng, T., Zhong, W., Guan, K., Wang, G.: Reliable and controllable data sharing based on blockchain. In: Wang, G., Choo, K.K.R., Ko, R.K.L., Xu, Y., Crispo, B. (eds.) Ubiquitous Security. Communications in Computer and Information Science, vol. 1557, pp. 229–240. Springer, Singapore (2022)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (2020YFB1005804), and in part by the National Natural Science Foundation of China under Grants 61632009, 61872097, and 61802076; and in part by the Natural Science Foundation of Guangdong Province (2022A1515011386). The Basic and Applied Basic Research Fund of Guangdong Province No. 2019A1515111080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, G., Yang, W., Peng, T., Xing, X., Chen, S., Li, Y. (2023). An Interactive Query Differential Privacy Protection Model Based on Big Data Analysis. In: Wang, G., Choo, KK.R., Wu, J., Damiani, E. (eds) Ubiquitous Security. UbiSec 2022. Communications in Computer and Information Science, vol 1768. Springer, Singapore. https://doi.org/10.1007/978-981-99-0272-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0272-9_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0271-2

  • Online ISBN: 978-981-99-0272-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics