Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effective Small Ship Detection with Enhanced-YOLOv7

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Small ship detection is widely used in marine environment monitoring, military applications and so on, and it has gained increasing attentions both in industry and academia. In this paper, we propose an effective small ship detection algorithm with enhanced-YOLOv7. Specifically, to reduce the feature loss of small ships and the impact of marine environment, we firstly design a small object-aware feature extraction module by considering both small-scale receptive fields and multi-branch residual structures. In addition, we propose a small object-friendly scale-insensitive regression scheme, to strengthen the contributions of both bounding box distance and difficult samples on regression loss as well as further increase learning efficiency of small ship detection. Moreover, based on the formulated penalty model, we design a geometric constraint-based Non-Maximum Suppression (NMS) method, to effectively decrease small ship detection omission rate. Finally, extensive experiments are implemented, and corresponding results confirm the effectiveness of the proposed algorithm.

Supported by the National Science Fund of China under Grant 62006119.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., Zhang, Y., Ding, M., Ghanem, B.: SOD-MTGAN: small object detection via multi-task generative adversarial network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 210–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_13

    Chapter  Google Scholar 

  2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  3. Deng, C., Wang, M., Liu, L., Liu, Y., Jiang, Y.: Extended feature pyramid network for small object detection. IEEE Trans. Multimedia 24, 1968–1979 (2021)

    Article  Google Scholar 

  4. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  5. Gevorgyan, Z.: SIoU Loss: more powerful learning for bounding box regression. arXiv preprint arXiv:2205.12740 (2022)

  6. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  7. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  8. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

    Google Scholar 

  9. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  10. Rabbi, J., Ray, N., Schubert, M., Chowdhury, S., Chao, D.: Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network. Remote Sens. 12(9), 1432 (2020)

    Article  Google Scholar 

  11. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. Advances in neural information processing systems, vol. 28 (2015)

    Google Scholar 

  13. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

    Google Scholar 

  14. Shao, Z., Wu, W., Wang, Z., Du, W., Li, C.: SeaShips: a large-scale precisely annotated dataset for ship detection. IEEE Trans. Multimedia 20(10), 2593–2604 (2018)

    Article  Google Scholar 

  15. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  16. Tong, Z., Chen, Y., Xu, Z., Yu, R.: Wise-IoU: bounding box regression loss with dynamic focusing mechanism. arXiv preprint arXiv:2301.10051 (2023)

  17. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  18. Wang, J., Xu, C., Yang, W., Yu, L.: A normalized gaussian Wasserstein distance for tiny object detection. arXiv preprint arXiv:2110.13389 (2021)

  19. Yang, C., Huang, Z., Wang, N.: QueryDet: cascaded sparse query for accelerating high-resolution small object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13668–13677 (2022)

    Google Scholar 

  20. Zhang, Y.F., Ren, W., Zhang, Z., Jia, Z., Wang, L., Tan, T.: Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 506, 146–157 (2022)

    Article  Google Scholar 

  21. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU Loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12993–13000 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Ding, N., Gong, C., Jin, Z., Li, G. (2024). Effective Small Ship Detection with Enhanced-YOLOv7. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14434. Springer, Singapore. https://doi.org/10.1007/978-981-99-8549-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8549-4_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8548-7

  • Online ISBN: 978-981-99-8549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics