Nothing Special   »   [go: up one dir, main page]

Skip to main content

MKB: Multi-Kernel Bures Metric for Nighttime Aerial Tracking

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14434))

Included in the following conference series:

  • 677 Accesses

Abstract

In recent years, many advanced visual object tracking algorithms have achieved significant performance improvements in daytime scenes. However, when these algorithms are applied at night on unmanned aerial vehicles, they often exhibit poor tracking accuracy due to the domain shift. Therefore, designing an effective and stable domain adaptation tracking framework is in great demand. Besides, as the complexity of the tracking task scene and a large number of samples, it is difficult to accurately characterize the feature differences. Moreover, the method should avoid excessive manual parameters. To solve above three challenges, this study proposes a metric-based domain alignment framework for nighttime object tracking of unmanned aerial vehicles. It achieves transfer learning from daytime to nighttime by introducing a multi-kernel Bures metric (MKB). MKB quantifies the distribution distance by calculating the difference between two domain covariance operators in the latent space. MKB also uses a linear combination of a series of kernel functions to accommodate complex samples of different scenes and categories, enhancing the ability of the metric to represent various sequences in the latent space. Besides, we introduce an alternating update mechanism to optimize the weights of kernels avoiding manual parameters. Experimental results demonstrate that the proposed method has significant advantages in improving tracking accuracy and robustness at nighttime.

This work was supported in part by the National Natural Science Foundation of China under Grant No. 62237001, 62202107, and 62176065, in part by the Guangdong Provincial National Science Foundation under Grant No. 2021A1515012017, in part by Science and Technology Planning Project of Guangdong Province, China, under Grant No. 2019B110210002, in part by the Guangdong Basic and Applied Basic Research Foundation under Grant No. 2021B1515120010, in part by Huangpu International Sci &Tech Cooperation Foundation of Guangzhou under Grant No. 2021GH12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  2. Cao, Z., Fu, C., Ye, J., Li, B., Li, Y.: HiFT: hierarchical feature transformer for aerial tracking. In: IEEE International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  3. Chen, Z., Zhong, B., Li, G., Zhang, S., Ji, R.: Siamese box adaptive network for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  4. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. (JMLR) 17(1), 2909–2913 (2016)

    MathSciNet  Google Scholar 

  5. Fu, C., Cao, Z., Li, Y., Ye, J., Feng, C.: Siamese anchor proposal network for high-speed aerial tracking. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE (2021)

    Google Scholar 

  6. Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: Siamcar: siamese fully convolutional classification and regression for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  7. Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic siamese network for visual object tracking. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  8. Huang, L., Zhao, X., Huang, K.: GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 43(5), 1562–1577 (2021)

    Article  Google Scholar 

  9. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of siamese visual tracking with very deep networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  10. Li, B., Fu, C., Ding, F., Ye, J., Lin, F.: Adtrack: target-aware dual filter learning for real-time anti-dark UAV tracking. In: IEEE International Conference on Robotics and Automation (ICRA) (2021)

    Google Scholar 

  11. Lukezic, A., Matas, J., Kristan, M.: D3S-a discriminative single shot segmentation tracker. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  12. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  13. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  14. Sosnovik, I., Moskalev, A., Smeulders, A.W.: Scale equivariance improves siamese tracking. In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2021)

    Google Scholar 

  15. Wang, N., Zhou, W., Song, Y., Ma, C., Liu, W., Li, H.: Unsupervised deep representation learning for real-time tracking. Int. J. Comput. Vis. (IJCV) 129, 400–418 (2021)

    Article  Google Scholar 

  16. Wang, R., Lu, J., Lu, Y., Nie, F., Li, X.: Discrete and parameter-free multiple kernel k-means. IEEE Trans. Image Process. (TIP) 31, 2796–2808 (2022)

    Article  Google Scholar 

  17. Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: SiamFC++: towards robust and accurate visual tracking with target estimation guidelines. In: AAAI Conference on Artificial Intelligence (AAAI) (2020)

    Google Scholar 

  18. Yang, L., Liu, R., Zhang, D.D., Zhang, L.: Deep location-specific tracking. In: ACM International Conference on Multimedia (MM) (2017)

    Google Scholar 

  19. Ye, J., Fu, C., Cao, Z., An, S., Zheng, G.Z., Li, B.: Tracker meets night: a transformer enhancer for UAV tracking. IEEE Robot. Autom. Lett. (RA-L) 7, 3866–3873 (2022)

    Google Scholar 

  20. Ye, J., Fu, C., Zheng, G., Paudel, D.P., Chen, G.: Unsupervised domain adaptation for nighttime aerial tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  21. Zhang, L., Gonzalez-Garcia, A., Weijer, J.v.d., Danelljan, M., Khan, F.S.: Learning the model update for siamese trackers. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  22. Zhang, Z., Wang, M., Nehorai, A.: Optimal transport in reproducing kernel hilbert spaces: theory and applications. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 42(7), 1741–1754 (2019)

    Article  Google Scholar 

  23. Zhang, Z., Peng, H.: Deeper and wider siamese networks for real-time visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  24. Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: object-aware anchor-free tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 771–787. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_46

    Chapter  Google Scholar 

  25. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qintai Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y., Kang, P., Hu, Q., Fang, X. (2024). MKB: Multi-Kernel Bures Metric for Nighttime Aerial Tracking. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14434. Springer, Singapore. https://doi.org/10.1007/978-981-99-8549-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8549-4_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8548-7

  • Online ISBN: 978-981-99-8549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics