Abstract
Generation methods for reliable class activation maps (CAMs) are essential for weakly-supervised semantic segmentation. These methods usually face the challenge of incomplete and inaccurate CAMs due to intra-class inconsistency of final features and inappropriate use of deep-level ones. To alleviate these issues, we propose the Global Consistency Enhancement Network (GCENet) that consists of Middle-level feature Auxiliary Module (MAM), Intra-class Consistency Enhancement Module (ICEM), and Critical Region Suppression Module (CRSM). Specifically, MAM uses middle-level features which carry clearer edges information and details to enhance output features. Then, for the problem of incomplete class activation maps caused by the high variance of local context of the image, ICEM is proposed to enhance the representation of features. It takes into account the intra-class global consistency and the local particularity. Furthermore, CRSM is proposed to solve the problem of excessive CAMs caused by the over-activation of features. It activates the low-discriminative regions appropriately, thus improving the quality of class activation maps. Through our comprehensive experiments, our method outperforms all other competitors and well demonstrates its effectiveness on the PASCAL VOC2012 dataset.
L. Jiang and X. Yang—These authors contributed equally to this work and share first authorship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Ahn, J., Kwak, S.: Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4981–4990 (2018)
Chang, Y.T., Wang, Q., Hung, W.C., Piramuthu, R., Tsai, Y.H., Yang, M.H.: Weakly-supervised semantic segmentation via sub-category exploration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8991–9000 (2020)
Wei, J., et al.: Chain of thought prompting elicits reasoning in large language models. arXiv Preprint arXiv:2201.11903 (2022)
Chen, J., Zhao, X., Luo, C., Shen, L.: Semformer: semantic guided activation transformer for weakly supervised semantic segmentation. arXiv preprint arXiv:2210.14618 (2022)
Chen, Q., Yang, L., Lai, J.H., Xie, X.: Self-supervised image-specific prototype exploration for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4288–4298 (2022)
Ru, L., Zhan, Y., Yu, B., Du, B.: Learning affinity from attention: end-to-end weakly-supervised semantic segmentation with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16846–16855 (2022)
Chen, Z., Wang, T., Wu, X., Hua, X.S., Zhang, H., Sun, Q.: Class re-activation maps for weakly-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 969–978 (2022)
Du, Y., Fu, Z., Liu, Q., Wang, Y.: Weakly supervised semantic segmentation by pixel-to-prototype contrast. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4320–4329 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Jiang, P.T., Yang, Y., Hou, Q., Wei, Y.: L2G: a simple local-to-global knowledge transfer framework for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16886–16896 (2022)
Lee, J., Choi, J., Mok, J., Yoon, S.: Reducing information bottleneck for weakly supervised semantic segmentation. Adv. Neural. Inf. Process. Syst. 34, 27408–27421 (2021)
Lee, J., Kim, E., Yoon, S.: Anti-adversarially manipulated attributions for weakly and semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4071–4080 (2021)
Li, J., Jie, Z., Wang, X., Wei, X., Ma, L.: Expansion and shrinkage of localization for weakly-supervised semantic segmentation. arXiv preprint arXiv:2209.07761 (2022)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Sun, G., Wang, W., Dai, J., Van Gool, L.: Mining cross-image semantics for weakly supervised semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 347–365. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_21
Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12275–12284 (2020)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)
Xie, J., Hou, X., Ye, K., Shen, L.: Cross language image matching for weakly supervised semantic segmentation. arXiv preprint arXiv:2203.02668 (2022)
Xu, L., Ouyang, W., Bennamoun, M., Boussaid, F., Sohel, F., Xu, D.: Leveraging auxiliary tasks with affinity learning for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6984–6993 (2021)
Yao, Y., et al.: Non-salient region object mining for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2623–2632 (2021)
Acknowledgments
This work was supported in part by the National Key R &D Program of China (No. 2021YFA1003004), in part by the Shanghai Municipal Natural Science Foundation (No. 21ZR1423300), in part by National Natural Science Foundation of China (No. 62203289).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Jiang, L., Yang, X., Ma, L., Li, Z. (2024). Global Consistency Enhancement Network for Weakly-Supervised Semantic Segmentation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14433. Springer, Singapore. https://doi.org/10.1007/978-981-99-8546-3_5
Download citation
DOI: https://doi.org/10.1007/978-981-99-8546-3_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8545-6
Online ISBN: 978-981-99-8546-3
eBook Packages: Computer ScienceComputer Science (R0)