Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Cluster Assignment for Unsupervised Semantic Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14428))

Included in the following conference series:

  • 755 Accesses

Abstract

Unsupervised semantic segmentation (USS) aims to identify semantically consistent regions and assign correct categories without annotations. Since the self-supervised pre-trained vision transformer (ViT) can provide pixel-level features containing rich class-aware information and object distinctions, it has recently been widely used as the backbone for unsupervised semantic segmentation. Although these methods achieve exceptional performance, they often rely on the parametric classifiers and therefore need the prior about the number of categories in advance. In this work, we investigate the process of clustering adaptively for the current mini-batch of images without having prior on the number of categories and propose Adaptive Cluster Assignment Module (ACAM) to replace parametric classifiers. Furthermore, we optimize ACAM to generate weights via the introduction of contrastive learning, which is used to re-weight features, thereby generating semantically consistent clusters. Additionally, we leverage image-text pre-trained models, CLIP, to assign specific labels to each mask obtained from clustering and pixel assignment. Our method achieves new state-of-the-art results in COCO-Stuff and Cityscapes datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, J., Kwak, S.: Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In: CVPR, pp. 4981–4990 (2018)

    Google Scholar 

  2. Balestriero, R., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023)

  3. Bao, H., Dong, L., Piao, S., Wei, F.: BEiT: BERT pre-training of image transformers. In: ICLR (2022)

    Google Scholar 

  4. Bearman, A., Russakovsky, O., Ferrari, V., Fei-Fei, L.: What’s the point: semantic segmentation with point supervision. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_34

    Chapter  Google Scholar 

  5. Caesar, H., Uijlings, J., Ferrari, V.: COCO-stuff: thing and stuff classes in context. In: CVPR, pp. 1209–1218 (2018)

    Google Scholar 

  6. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  7. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: NeurIPS, vol. 33, pp. 9912–9924 (2020)

    Google Scholar 

  8. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV, pp. 9650–9660 (2021)

    Google Scholar 

  9. Chen, P., Liu, S., Jia, J.: Jigsaw clustering for unsupervised visual representation learning. In: CVPR, pp. 11526–11535 (2021)

    Google Scholar 

  10. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  11. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR, pp. 1290–1299 (2022)

    Google Scholar 

  12. Cho, J.H., Mall, U., Bala, K., Hariharan, B.: PiCIE: unsupervised semantic segmentation using invariance and equivariance in clustering. In: CVPR, pp. 16794–16804 (2021)

    Google Scholar 

  13. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016)

    Google Scholar 

  14. Dai, J., He, K., Sun, J.: Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV, pp. 1635–1643 (2015)

    Google Scholar 

  15. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  16. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: NeurIPS, vol. 33, pp. 21271–21284 (2020)

    Google Scholar 

  17. Hamilton, M., Zhang, Z., Hariharan, B., Snavely, N., Freeman, W.T.: Unsupervised semantic segmentation by distilling feature correspondences. In: ICLR (2022)

    Google Scholar 

  18. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR, pp. 16000–16009 (2022)

    Google Scholar 

  19. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  20. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: ICCV, pp. 9865–9874 (2019)

    Google Scholar 

  21. Ke, T.W., Hwang, J.J., Guo, Y., Wang, X., Yu, S.X.: Unsupervised hierarchical semantic segmentation with multiview cosegmentation and clustering transformers. In: CVPR, pp. 2571–2581 (2022)

    Google Scholar 

  22. Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  23. Kim, D., Cho, D., Yoo, D., Kweon, I.S.: Learning image representations by completing damaged jigsaw puzzles. In: WACV, pp. 793–802. IEEE (2018)

    Google Scholar 

  24. Komodakis, N., Gidaris, S.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  25. Li, K., et al.: ACSeg: adaptive conceptualization for unsupervised semantic segmentation. In: CVPR (2023)

    Google Scholar 

  26. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: CVPR, pp. 3159–3167 (2016)

    Google Scholar 

  27. Melas-Kyriazi, L., Rupprecht, C., Laina, I., Vedaldi, A.: Deep spectral methods: a surprisingly strong baseline for unsupervised semantic segmentation and localization. In: CVPR, pp. 8364–8375 (2022)

    Google Scholar 

  28. Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  29. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  30. Rao, Y., et al.: DenseCLIP: language-guided dense prediction with context-aware prompting. In: CVPR, pp. 18082–18091 (2022)

    Google Scholar 

  31. Seong, H.S., Moon, W., Lee, S., Heo, J.P.: Leveraging hidden positives for unsupervised semantic segmentation. In: CVPR (2023)

    Google Scholar 

  32. Shin, G., Xie, W., Albanie, S.: ReCo: retrieve and co-segment for zero-shot transfer. In: NeurIPS (2022)

    Google Scholar 

  33. Shin, G., Xie, W., Albanie, S.: Namedmask: distilling segmenters from complementary foundation models. In: CVPRW (2023)

    Google Scholar 

  34. Song, C., Huang, Y., Ouyang, W., Wang, L.: Box-driven class-wise region masking and filling rate guided loss for weakly supervised semantic segmentation. In: CVPR, pp. 3136–3145 (2019)

    Google Scholar 

  35. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Van Gool, L.: Unsupervised semantic segmentation by contrasting object mask proposals. In: ICCV, pp. 10052–10062 (2021)

    Google Scholar 

  36. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  37. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. TPAMI 43(10), 3349–3364 (2020)

    Article  Google Scholar 

  38. Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: CVPR, pp. 12275–12284 (2020)

    Google Scholar 

  39. Wu, D., Guo, Z., Li, A., Yu, C., Gao, C., Sang, N.: Semantic segmentation via pixel-to-center similarity calculation. arXiv preprint arXiv:2301.04870 (2023)

  40. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: NeurIPS, vol. 34, pp. 12077–12090 (2021)

    Google Scholar 

  41. Xie, Z., et al.: SimMIM: a simple framework for masked image modeling. In: CVPR, pp. 9653–9663 (2022)

    Google Scholar 

  42. Yin, Z., et al.: TransFGU: a top-down approach to fine-grained unsupervised semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13689, pp. 73–89. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_5

    Chapter  Google Scholar 

  43. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11

    Chapter  Google Scholar 

  44. Yun, S., Lee, H., Kim, J., Shin, J.: Patch-level representation learning for self-supervised vision transformers. In: CVPR, pp. 8354–8363 (2022)

    Google Scholar 

  45. Zadaianchuk, A., Kleindessner, M., Zhu, Y., Locatello, F., Brox, T.: Unsupervised semantic segmentation with self-supervised object-centric representations. In: ICLR (2023)

    Google Scholar 

  46. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. In: CVPR, pp. 12104–12113 (2022)

    Google Scholar 

  47. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: CVPR, pp. 6881–6890 (2021)

    Google Scholar 

  48. Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from CLIP. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13688, pp. 696–712. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_40

    Chapter  Google Scholar 

  49. Zhou, J., et al.: Image BERT pre-training with online tokenizer. In: ICLR (2022)

    Google Scholar 

  50. Zhou, T., Wang, W., Konukoglu, E., Van Gool, L.: Rethinking semantic segmentation: a prototype view. In: CVPR, pp. 2582–2593 (2022)

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge High Performance Computing Center of Central South University for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiong Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Liu, Q., Zhang, C., Liang, Y. (2024). Adaptive Cluster Assignment for Unsupervised Semantic Segmentation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14428. Springer, Singapore. https://doi.org/10.1007/978-981-99-8462-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8462-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8461-9

  • Online ISBN: 978-981-99-8462-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics