Abstract
Unsupervised semantic segmentation (USS) aims to identify semantically consistent regions and assign correct categories without annotations. Since the self-supervised pre-trained vision transformer (ViT) can provide pixel-level features containing rich class-aware information and object distinctions, it has recently been widely used as the backbone for unsupervised semantic segmentation. Although these methods achieve exceptional performance, they often rely on the parametric classifiers and therefore need the prior about the number of categories in advance. In this work, we investigate the process of clustering adaptively for the current mini-batch of images without having prior on the number of categories and propose Adaptive Cluster Assignment Module (ACAM) to replace parametric classifiers. Furthermore, we optimize ACAM to generate weights via the introduction of contrastive learning, which is used to re-weight features, thereby generating semantically consistent clusters. Additionally, we leverage image-text pre-trained models, CLIP, to assign specific labels to each mask obtained from clustering and pixel assignment. Our method achieves new state-of-the-art results in COCO-Stuff and Cityscapes datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ahn, J., Kwak, S.: Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In: CVPR, pp. 4981–4990 (2018)
Balestriero, R., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023)
Bao, H., Dong, L., Piao, S., Wei, F.: BEiT: BERT pre-training of image transformers. In: ICLR (2022)
Bearman, A., Russakovsky, O., Ferrari, V., Fei-Fei, L.: What’s the point: semantic segmentation with point supervision. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_34
Caesar, H., Uijlings, J., Ferrari, V.: COCO-stuff: thing and stuff classes in context. In: CVPR, pp. 1209–1218 (2018)
Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: NeurIPS, vol. 33, pp. 9912–9924 (2020)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV, pp. 9650–9660 (2021)
Chen, P., Liu, S., Jia, J.: Jigsaw clustering for unsupervised visual representation learning. In: CVPR, pp. 11526–11535 (2021)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR (2020)
Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR, pp. 1290–1299 (2022)
Cho, J.H., Mall, U., Bala, K., Hariharan, B.: PiCIE: unsupervised semantic segmentation using invariance and equivariance in clustering. In: CVPR, pp. 16794–16804 (2021)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016)
Dai, J., He, K., Sun, J.: Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV, pp. 1635–1643 (2015)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)
Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: NeurIPS, vol. 33, pp. 21271–21284 (2020)
Hamilton, M., Zhang, Z., Hariharan, B., Snavely, N., Freeman, W.T.: Unsupervised semantic segmentation by distilling feature correspondences. In: ICLR (2022)
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR, pp. 16000–16009 (2022)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)
Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: ICCV, pp. 9865–9874 (2019)
Ke, T.W., Hwang, J.J., Guo, Y., Wang, X., Yu, S.X.: Unsupervised hierarchical semantic segmentation with multiview cosegmentation and clustering transformers. In: CVPR, pp. 2571–2581 (2022)
Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS, vol. 33, pp. 18661–18673 (2020)
Kim, D., Cho, D., Yoo, D., Kweon, I.S.: Learning image representations by completing damaged jigsaw puzzles. In: WACV, pp. 793–802. IEEE (2018)
Komodakis, N., Gidaris, S.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)
Li, K., et al.: ACSeg: adaptive conceptualization for unsupervised semantic segmentation. In: CVPR (2023)
Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: CVPR, pp. 3159–3167 (2016)
Melas-Kyriazi, L., Rupprecht, C., Laina, I., Vedaldi, A.: Deep spectral methods: a surprisingly strong baseline for unsupervised semantic segmentation and localization. In: CVPR, pp. 8364–8375 (2022)
Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763. PMLR (2021)
Rao, Y., et al.: DenseCLIP: language-guided dense prediction with context-aware prompting. In: CVPR, pp. 18082–18091 (2022)
Seong, H.S., Moon, W., Lee, S., Heo, J.P.: Leveraging hidden positives for unsupervised semantic segmentation. In: CVPR (2023)
Shin, G., Xie, W., Albanie, S.: ReCo: retrieve and co-segment for zero-shot transfer. In: NeurIPS (2022)
Shin, G., Xie, W., Albanie, S.: Namedmask: distilling segmenters from complementary foundation models. In: CVPRW (2023)
Song, C., Huang, Y., Ouyang, W., Wang, L.: Box-driven class-wise region masking and filling rate guided loss for weakly supervised semantic segmentation. In: CVPR, pp. 3136–3145 (2019)
Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Van Gool, L.: Unsupervised semantic segmentation by contrasting object mask proposals. In: ICCV, pp. 10052–10062 (2021)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)
Wang, J., et al.: Deep high-resolution representation learning for visual recognition. TPAMI 43(10), 3349–3364 (2020)
Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: CVPR, pp. 12275–12284 (2020)
Wu, D., Guo, Z., Li, A., Yu, C., Gao, C., Sang, N.: Semantic segmentation via pixel-to-center similarity calculation. arXiv preprint arXiv:2301.04870 (2023)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: NeurIPS, vol. 34, pp. 12077–12090 (2021)
Xie, Z., et al.: SimMIM: a simple framework for masked image modeling. In: CVPR, pp. 9653–9663 (2022)
Yin, Z., et al.: TransFGU: a top-down approach to fine-grained unsupervised semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13689, pp. 73–89. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_5
Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11
Yun, S., Lee, H., Kim, J., Shin, J.: Patch-level representation learning for self-supervised vision transformers. In: CVPR, pp. 8354–8363 (2022)
Zadaianchuk, A., Kleindessner, M., Zhu, Y., Locatello, F., Brox, T.: Unsupervised semantic segmentation with self-supervised object-centric representations. In: ICLR (2023)
Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. In: CVPR, pp. 12104–12113 (2022)
Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: CVPR, pp. 6881–6890 (2021)
Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from CLIP. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13688, pp. 696–712. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_40
Zhou, J., et al.: Image BERT pre-training with online tokenizer. In: ICLR (2022)
Zhou, T., Wang, W., Konukoglu, E., Van Gool, L.: Rethinking semantic segmentation: a prototype view. In: CVPR, pp. 2582–2593 (2022)
Acknowledgments
The authors wish to acknowledge High Performance Computing Center of Central South University for computational resources.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Li, S., Liu, Q., Zhang, C., Liang, Y. (2024). Adaptive Cluster Assignment for Unsupervised Semantic Segmentation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14428. Springer, Singapore. https://doi.org/10.1007/978-981-99-8462-6_7
Download citation
DOI: https://doi.org/10.1007/978-981-99-8462-6_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8461-9
Online ISBN: 978-981-99-8462-6
eBook Packages: Computer ScienceComputer Science (R0)