Nothing Special   »   [go: up one dir, main page]

Skip to main content

Blendshape-Based Migratable Speech-Driven 3D Facial Animation with Overlapping Chunking-Transformer

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14426))

Included in the following conference series:

  • 796 Accesses

Abstract

Speech-driven 3D facial animation has attracted an amount of research and has been widely used in games and virtual reality. Most of the latest state-of-the-art methods employ Transformer-based architecture with good sequence modeling capability. However, most of the animations produced by these methods are limited to specific facial meshes and cannot handle lengthy audio inputs. To tackle these limitations, we leverage the advantage of blendshapes to migrate the generated animations to multiple facial meshes and propose an overlapping chunking strategy that enables the model to support long audio inputs. Also, we design a data calibration approach that can significantly enhance the quality of blendshapes data and make lip movements more natural. Experiments show that our method performs better than the methods predicting vertices, and the animation can be migrated to various meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and mandarin. In: ICML, pp. 173–182. PMLR (2016)

    Google Scholar 

  2. Baevski, A., Zhou, Y., Mohamed, A., Auli, M.: wav2vec 2.0: a framework for self-supervised learning of speech representations. Adv. Neural Inf. Process. Syst. 33, 12449–12460 (2020)

    Google Scholar 

  3. Conneau, A., Baevski, A., Collobert, R., Mohamed, A., Auli, M.: Unsupervised cross-lingual representation learning for speech recognition. arXiv preprint arXiv:2006.13979 (2020)

  4. Cudeiro, D., Bolkart, T., Laidlaw, C., Ranjan, A., Black, M.J.: Capture, learning, and synthesis of 3d speaking styles. In: CVPR, pp. 10101–10111 (2019)

    Google Scholar 

  5. Edwards, P., Landreth, C., Fiume, E., Singh, K.: Jali: an animator-centric viseme model for expressive lip synchronization. ACM Trans. Graph. 35(4), 1–11 (2016)

    Article  Google Scholar 

  6. Egger, B., et al.: 3d morphable face models-past, present, and future. ACM Trans. Graph. 39(5), 1–38 (2020)

    Google Scholar 

  7. Ekman, P., Friesen, W.V.: Facial action coding system. Environ. Psychol. Nonverb. Behav. (1978)

    Google Scholar 

  8. Ezzat, T., Poggio, T.: Miketalk: a talking facial display based on morphing visemes. In: Proceedings Computer Animation 1998, pp. 96–102. IEEE (1998)

    Google Scholar 

  9. Fan, Y., Lin, Z., Saito, J., Wang, W., Komura, T.: Faceformer: speech-driven 3d facial animation with transformers. In: CVPR, pp. 18770–18780 (2022)

    Google Scholar 

  10. Fanelli, G., Gall, J., Romsdorfer, H., Weise, T., Van Gool, L.: A 3-d audio-visual corpus of affective communication. IEEE Trans. Multim. 12(6), 591–598 (2010)

    Article  Google Scholar 

  11. Karras, T., Aila, T., Laine, S., Herva, A., Lehtinen, J.: Audio-driven facial animation by joint end-to-end learning of pose and emotion. ACM Trans. Graph. 36(4), 1–12 (2017)

    Article  Google Scholar 

  12. Kitaev, N., Kaiser, Ł., Levskaya, A.: Reformer: the efficient transformer. arXiv preprint arXiv:2001.04451 (2020)

  13. Lahiri, A., Kwatra, V., Frueh, C., Lewis, J., Bregler, C.: Lipsync3d: data-efficient learning of personalized 3d talking faces from video using pose and lighting normalization. In: CVPR, pp. 2755–2764 (2021)

    Google Scholar 

  14. Lewis, J.: Automated lip-sync: background and techniques. J. Vis. Comput. Animat. 2(4), 118–122 (1991)

    Article  Google Scholar 

  15. Li, R., et al.: Learning formation of physically-based face attributes. In: CVPR, pp. 3410–3419 (2020)

    Google Scholar 

  16. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4d scans. ACM Trans. Graph. 36(6), 194–1 (2017)

    Article  Google Scholar 

  17. Liu, H., et al.: BEAT: a large-scale semantic and emotional multi-modal dataset for conversational gestures synthesis. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13667, pp. 612–630. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20071-7_36

  18. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  19. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 1–16 (2015)

    Article  Google Scholar 

  20. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  21. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  22. Prajwal, K., Mukhopadhyay, R., Namboodiri, V.P., Jawahar, C.: A lip sync expert is all you need for speech to lip generation in the wild. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 484–492 (2020)

    Google Scholar 

  23. Richard, A., Zollhöfer, M., Wen, Y., De la Torre, F., Sheikh, Y.: Meshtalk: 3d face animation from speech using cross-modality disentanglement. In: ICCV, pp. 1173–1182 (2021)

    Google Scholar 

  24. Suwajanakorn, S., Seitz, S.M., Kemelmacher-Shlizerman, I.: Synthesizing obama: learning lip sync from audio. ACM Trans. Graph. 36(4), 1–13 (2017)

    Article  Google Scholar 

  25. Taylor, S.L., Mahler, M., Theobald, B.J., Matthews, I.: Dynamic units of visual speech. In: Proceedings of the 11th ACM SIGGRAPH/Eurographics Conference on Computer Animation, pp. 275–284 (2012)

    Google Scholar 

  26. Thambiraja, B., Habibie, I., Aliakbarian, S., Cosker, D., Theobalt, C., Thies, J.: Imitator: personalized speech-driven 3d facial animation. arXiv preprint arXiv:2301.00023 (2022)

  27. Thies, J., Elgharib, M., Tewari, A., Theobalt, C., Nießner, M.: Neural voice puppetry: audio-driven facial reenactment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 716–731. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_42

  28. Tian, G., Yuan, Y., Liu, Y.: Audio2face: generating speech/face animation from single audio with attention-based bidirectional LSTM networks. In: ICME, pp. 366–371. IEEE (2019)

    Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  30. Wang, S., Li, L., Ding, Y., Fan, C., Yu, X.: Audio2head: audio-driven one-shot talking-head generation with natural head motion. arXiv preprint arXiv:2107.09293 (2021)

  31. Xing, J., Xia, M., Zhang, Y., Cun, X., Wang, J., Wong, T.T.: Codetalker: speech-driven 3d facial animation with discrete motion prior. In: CVPR, pp. 12780–12790 (2023)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Shenzhen Technology Project (JCYJ20220531095810023), National Natural Science Foundation of China (61976143, U21A20487), Guangdong-Hong Kong-Macao JointLaboratory of Human-Machine Intelligence-Synergy Systems (2019B121205007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 780 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Ma, X., Wang, L., Cheng, J. (2024). Blendshape-Based Migratable Speech-Driven 3D Facial Animation with Overlapping Chunking-Transformer. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14426. Springer, Singapore. https://doi.org/10.1007/978-981-99-8432-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8432-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8431-2

  • Online ISBN: 978-981-99-8432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics