Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving Handwritten Mathematical Expression Recognition via an Attention Refinement Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1967))

Included in the following conference series:

  • 753 Accesses

Abstract

Handwritten mathematical expression recognition (HMER), typically regarding as a sequence-to-sequence problem, has made great progress in recent years, where RNN based models have been widely adopted. Although Transformer based model has demonstrated success in many areas, its performance is not satisfied due to the issue of standard attention mechanism in HMER. Therefore, we propose to improve the performance via an attention refinement network in the Transformer framework for HMER. We firstly adopt a shift window attention (SWA) from Swin Transformer to capture spatial contexts of the whole image for HMER. Moreover, we propose a refined coverage attention (RCA) to overcome the issue of lack of converge in the standard attention mechanism, where we utilize a convolutional kernel with a gating function to obtain coverage features. With the proposed RCA, we refine coverage attentions to attenuate the repeating issue of focused areas in the long-sequence. In addition, we utilize a pyramid data augmentation method to generate mathematical expression images with multiple resolutions to enhance the model generalization. We evaluate the proposed attention refinement network on the HMER benchmark datasets of CROHME2014/2016/2019, and extensive experiments demonstrate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bian, X., Qin, B., Xin, X., Li, J., Su, X., Wang, Y.: Handwritten mathematical expression recognition via attention aggregation based bi-directional mutual learning. In: AAAI 2022, vol. 36, pp. 113–121 (2022)

    Google Scholar 

  2. Chu, X., et al.: Conditional positional encodings for vision transformers. arXiv preprint arXiv:2102.10882 (2021)

  3. Ding, H., Chen, K., Huo, Q.: An encoder-decoder approach to handwritten mathematical expression recognition with multi-head attention and stacked decoder. In: ICDAR 2021, pp. 602–616 (2021)

    Google Scholar 

  4. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  5. Huang, K., Hussain, A., Wang, Q.F., Zhang, R.: Deep Learning: Fundamentals, Theory and Applications, vol. 2. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06073-2

  6. Li, B., et al.: When counting meets HMER: counting-aware network for handwritten mathematical expression recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. LNCS, vol. 13688, pp. 197–214. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_12

  7. Li, Z., Jin, L., Lai, S., Zhu, Y.: Improving attention-based handwritten mathematical expression recognition with scale augmentation and drop attention. In: ICFHR 2020, pp. 175–180 (2020)

    Google Scholar 

  8. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV 2021, pp. 10012–10022 (2021)

    Google Scholar 

  9. Mi, H., Sankaran, B., Wang, Z., Ittycheriah, A.: Coverage embedding models for neural machine translation. arXiv preprint arXiv:1605.03148 (2016)

  10. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  11. Wang, J., Du, J., Zhang, J., Wang, B., Ren, B.: Stroke constrained attention network for online handwritten mathematical expression recognition. Pattern Recogn. 119, 108047 (2021)

    Article  Google Scholar 

  12. Zhang, J., Du, J., Dai, L.: Multi-scale attention with dense encoder for handwritten mathematical expression recognition. In: ICPR 2018, pp. 2245–2250 (2018)

    Google Scholar 

  13. Zhang, J., Du, J., Dai, L.: Track, Attend, and Parse (TAP): an end-to-end framework for online handwritten mathematical expression recognition. IEEE Trans. Multimedia 21(1), 221–233 (2018)

    Article  Google Scholar 

  14. Zhang, J., Du, J., Yang, Y., Song, Y.Z., Dai, L.: SRD: a tree structure based decoder for online handwritten mathematical expression recognition. IEEE Trans. Multimedia 23, 2471–2480 (2020)

    Article  Google Scholar 

  15. Zhang, J., Du, J., Yang, Y., Song, Y.Z., Wei, S., Dai, L.: A tree-structured decoder for image-to-markup generation. In: ICML 2020, pp. 11076–11085 (2020)

    Google Scholar 

  16. Zhang, J., et al.: Watch, attend and parse: an end-to-end neural network based approach to handwritten mathematical expression recognition. Pattern Recogn. 71, 196–206 (2017)

    Article  Google Scholar 

  17. Zhao, W., Gao, L.: CoMER: modeling coverage for transformer-based handwritten mathematical expression recognition. In: Avidan, S., Brostow, G., Ciss, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. LNCS, vol. 13688, pp. 392–408. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_23

  18. Zhao, W., Gao, L., Yan, Z., Peng, S., Du, L., Zhang, Z.: Handwritten mathematical expression recognition with bidirectionally trained transformer. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12822, pp. 570–584. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86331-9_37

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was funded by National Natural Science Foundation of China (NSFC) no. 62276258, and Jiangsu Science and Technology Programme no. BE2020006-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiufeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Wang, Q., Liao, W., Chen, J., Huang, K. (2024). Improving Handwritten Mathematical Expression Recognition via an Attention Refinement Network. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1967. Springer, Singapore. https://doi.org/10.1007/978-981-99-8178-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8178-6_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8177-9

  • Online ISBN: 978-981-99-8178-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics