Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stereoential Net: Deep Network for Learning Building Height Using Stereo Imagery

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Height estimation plays a crucial role in the planning and assessment of urban development, enabling effective decision-making and evaluation of urban built areas. Accurate estimation of building heights from remote sensing optical imagery poses significant challenges in preserving both the overall structure of complex scenes and the elevation details of the buildings. This paper proposes a novel end-to-end deep learning-based network (Stereoential Net) comprising a multi-scale differential shortcut connection module (MSDSCM) at the decoding end and a modified stereo U-Net (mSUNet). The proposed Stereoential network performs a multi-scale differential decoding features fusion to preserve fine details for improved height estimation using stereo optical imagery. Unlike existing methods, our approach does not use any multi-spectral satellite imagery, instead, it only employs freely available optical imagery, yet it achieves superior performance. We evaluate our proposed network on two benchmark datasets, the IEEE Data Fusion Contest 2018 (DFC2018) dataset and the 42-cities dataset. The 42-cities dataset is comprised of 42 different densely populated cities of China having diverse sets of buildings with varying shapes and sizes. The quantitative and qualitative results reveal that our proposed network outperforms the SOTA algorithms for DFC2018. Our method reduces the root-mean-square error (RMSE) by 0.31 m as compared to state-of-the-art multi-spectral approaches on the 42-cities dataset. The code will be made publically available via the GitHub repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World urban population. https://statisticstimes.com/demographics/world-urban-population.php/. Accessed 21 June 2023

  2. Ahn, H., Yim, C.: Convolutional neural networks using skip connections with layer groups for super-resolution image reconstruction based on deep learning. Appl. Sci. 10(6), 1959 (2020)

    Article  Google Scholar 

  3. Cao, Y., Huang, X.: A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: a case study of 42 Chinese cities. Remote Sens. Environ. 264, 112590 (2021)

    Article  Google Scholar 

  4. Carvalho, M., Le Saux, B., Trouvé-Peloux, P., Champagnat, F., Almansa, A.: Multitask learning of height and semantics from aerial images. IEEE Geosci. Remote Sens. Lett. 17(8), 1391–1395 (2019)

    Article  Google Scholar 

  5. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  6. Deren, L., Wenbo, Y., Zhenfeng, S.: Smart city based on digital twins. Comput. Urban Sci. 1(1), 1–11 (2021)

    Article  Google Scholar 

  7. Huang, H., et al.: Estimating building height in China from ALOS AW3D30. ISPRS J. Photogramm. Remote. Sens. 185, 146–157 (2022)

    Article  Google Scholar 

  8. Karatsiolis, S., Kamilaris, A., Cole, I.: IMG2nDSM: height estimation from single airborne RGB images with deep learning. Remote Sens. 13(12), 2417 (2021)

    Article  Google Scholar 

  9. Liu, C.J., Krylov, V.A., Kane, P., Kavanagh, G., Dahyot, R.: IM2ELEVATION: building height estimation from single-view aerial imagery. Remote Sens. 12(17), 2719 (2020)

    Article  Google Scholar 

  10. Lu, M., Liu, J., Wang, F., Xiang, Y.: Multi-task learning of relative height estimation and semantic segmentation from single airborne RGB images. Remote Sens. 14(14), 3450 (2022)

    Article  Google Scholar 

  11. Mahtta, R., Mahendra, A., Seto, K.C.: Building up or spreading out? Typologies of urban growth across 478 cities of 1 million+. Environ. Res. Lett. 14(12), 124077 (2019)

    Article  Google Scholar 

  12. Mou, L., Zhu, X.X.: IM2HEIGHT: height estimation from single monocular imagery via fully residual convolutional-deconvolutional network. arXiv preprint arXiv:1802.10249 (2018)

  13. Perera, A., Javanroodi, K., Nik, V.M.: Climate resilient interconnected infrastructure: co-optimization of energy systems and urban morphology. Appl. Energy 285, 116430 (2021)

    Article  Google Scholar 

  14. Prasad, S., Le Saux, B., Yokoya, N., Hansch, R.: IEEE Data Fusion Challenge - Fusion of Multispectral LiDAR and Hyperspectral data (2020). https://doi.org/10.21227/jnh9-nz89

  15. Qi, F., Zhai, J.Z., Dang, G.: Building height estimation using Google Earth. Energy Build. 118, 123–132 (2016)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Sautier, C., Puy, G., Gidaris, S., Boulch, A., Bursuc, A., Marlet, R.: Image-to-lidar self-supervised distillation for autonomous driving data. In: Proceedings of CVPR, June 2022

    Google Scholar 

  18. Shao, Y., Taff, G.N., Walsh, S.J.: Shadow detection and building-height estimation using IKONOS data. Int. J. Remote Sens. 32(22), 6929–6944 (2011)

    Article  Google Scholar 

  19. Stouffs, R.: Virtual 3D city models. ISPRS Int. J. Geo-Inf. 11(4), 1–7 (2022)

    Article  Google Scholar 

  20. Suwardhi, D., Trisyanti, S.W., Virtriana, R., Syamsu, A.A., Jannati, S., Halim, R.S.: Heritage smart city mapping, planning and land administration (Hestya). ISPRS Int. J. Geo-Inf. 11(2), 1–10 (2022)

    Article  Google Scholar 

  21. Xie, Y., Feng, D., Xiong, S., Zhu, J., Liu, Y.: Multi-scene building height estimation method based on shadow in high resolution imagery. Remote Sens. 13(15), 2862 (2021)

    Article  Google Scholar 

  22. Xing, S., Dong, Q., Hu, Z.: Gated feature aggregation for height estimation from single aerial images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  23. Xue, M., Li, J., Zhao, Z., Luo, Q.: SAR2HEIGHT: height estimation from a single SAR image in mountain areas via sparse height and proxyless depth-aware penalty neural architecture search for Unet. Remote Sens. 14(21), 5392 (2022)

    Article  Google Scholar 

  24. Yu, D., Ji, S., Liu, J., Wei, S.: Automatic 3D building reconstruction from multi-view aerial images with deep learning. ISPRS J. Photogramm. Remote. Sens. 171, 155–170 (2021)

    Article  Google Scholar 

  25. Zhang, C., Cui, Y., Zhu, Z., Jiang, S., Jiang, W.: Building height extraction from GF-7 satellite images based on roof contour constrained stereo matching. Remote sensing 14(7), 1566 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr.Usman Nazir for the assistance with proofreading and comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Jabbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jabbar, S., Taj, M. (2024). Stereoential Net: Deep Network for Learning Building Height Using Stereo Imagery. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1967. Springer, Singapore. https://doi.org/10.1007/978-981-99-8178-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8178-6_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8177-9

  • Online ISBN: 978-981-99-8178-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics