Nothing Special   »   [go: up one dir, main page]

Skip to main content

Prior-Enhanced Network for Image-Based PM2.5 Estimation from Imbalanced Data Distribution

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1964))

Included in the following conference series:

  • 701 Accesses

Abstract

The effective monitoring of PM2.5, a major indicator of air pollution, is crucial to human activities. Compared to traditional physiochemical techniques, image-based methods train PM2.5 estimators by using datasets containing pairs of images and PM2.5 levels, which are efficient, economical, and convenient to deploy. However, existing methods either employ handcrafted features, which can be influenced by the image content, or require additional weather data acquired probably by laborious processes. To estimate the PM2.5 concentration from a single image without requiring extra data, we herein propose a learning-based prior-enhanced (PE) network—comprising a main branch, an auxiliary branch, and a feature fusion attention module—to learn from an input image and its corresponding dark channel (DC) and inverted saturation (IS) maps. In addition, we propose an histogram smoothing (HS) algorithm to solve the problem of imbalanced data distribution, thereby improving the estimation accuracy in cases of heavy air pollution. To the best of our knowledge, this study is the first to address the phenomenon of a data imbalance in image-based PM2.5 estimation. Finally, we construct a new dataset containing multi-angle images and more than 30 types of air data. Extensive experiments on image-based PM2.5 monitoring datasets verify the superior performance of our proposed neural networks and the HS strategy.

X. Fang and Z. Li—Both authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.tour-beijing.com/real_time_weather_photo/.

References

  1. Bu, X., et al.: Global PM2.5-attributable health burden from 1990 to 2017: Estimates from the global burden of disease study 2017. Environ. Res. 197, 111123 (2021)

    Article  Google Scholar 

  2. Charron, A., Harrison, R.M., Moorcroft, S., Booker, J.: Quantitative interpretation of divergence between PM10 and PM2.5 mass measurement by TEOM and gravimetric (partisol) instruments. Atmos. Environ. 38(3), 415–423 (2004)

    Article  Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  4. Chok, N.S.: Pearson’s versus Spearman’s and Kendall’s correlation coefficients for continuous data, Ph. D. thesis, University of Pittsburgh (2010)

    Google Scholar 

  5. Feng, L., Yang, T., Wang, Z.: Performance evaluation of photographic measurement in the machine-learning prediction of ground PM2.5 concentration. Atmos. Environ. 262, 118623 (2021)

    Article  Google Scholar 

  6. Gu, K., Liu, H., Xia, Z., Qiao, J., Lin, W., Thalmann, D.: PM2.5 monitoring: use information abundance measurement and wide and deep learning. IEEE Trans. Neural Networks Learn. Syst. 32(10), 4278–4290 (2021)

    Article  Google Scholar 

  7. Gu, K., Qiao, J., Li, X.: Highly efficient picture-based prediction of PM2.5 concentration. IEEE Trans. Ind. Electron. 66(4), 3176–3184 (2018)

    Article  Google Scholar 

  8. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2019)

    Google Scholar 

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Kumari, R., Singh, J., Gosain, A.: SmS: smote-stacked hybrid model for diagnosis of polycystic ovary syndrome using feature selection method. Expert Syst. Appl. 225, 120102 (2023)

    Article  Google Scholar 

  14. Liu, C., Tsow, F., Zou, Y., Tao, N.: Particle pollution estimation based on image analysis. PLoS ONE 11(2), e0145955 (2016)

    Article  Google Scholar 

  15. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  16. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the International Conference on Machine Learning, p. 3. Citeseer (2013)

    Google Scholar 

  17. Marquès, M., Domingo, J.L.: Positive association between outdoor air pollution and the incidence and severity of COVID-19. a review of the recent scientific evidences. Environ. Res. 203, 111930 (2022)

    Article  Google Scholar 

  18. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  19. Peng, M., et al.: Trainable undersampling for class-imbalance learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4707–4714 (2019)

    Google Scholar 

  20. Qiao, J., He, Z., Du, S.: Prediction of PM2.5 concentration based on weighted bagging and image contrast-sensitive features. Stochast. Environ. Res. Risk Assess. 34(3), 561–573 (2020)

    Article  Google Scholar 

  21. Rijal, N., Gutta, R.T., Cao, T., Lin, J., Bo, Q., Zhang, J.: Ensemble of deep neural networks for estimating particulate matter from images. In: 2018 IEEE 3rd International Conference on Image, Vision and Computing, pp. 733–738. IEEE (2018)

    Google Scholar 

  22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  23. Shapiro, L.G., Stockman, G.C., et al.: Computer Vision, vol. 3. Prentice Hall New Jersey (2001)

    Google Scholar 

  24. Wang, G., Shi, Q., Wang, H., Sun, K., Lu, Y., Di, K.: Multi-modal image feature fusion-based PM2.5 concentration estimation. Atmos. Pollut. Res. 13(3), 101345 (2022)

    Article  Google Scholar 

  25. Wang, T., et al.: C2AM loss: chasing a better decision boundary for long-tail object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6980–6989 (2022)

    Google Scholar 

  26. Yang, Y., Zha, K., Chen, Y., Wang, H., Katabi, D.: Delving into deep imbalanced regression. In: International Conference on Machine Learning, pp. 11842–11851. PMLR (2021)

    Google Scholar 

  27. Yue, G., Gu, K., Qiao, J.: Effective and efficient photo-based PM2.5 concentration estimation. IEEE Trans. Instrum. Measur. 68(10), 3962–3971 (2019)

    Article  Google Scholar 

  28. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(9), 10795–10816 (2023). IEEE

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 62071201), and Guangdong Basic and Applied Basic Research Foundation (No.2022A1515010119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, X. et al. (2024). Prior-Enhanced Network for Image-Based PM2.5 Estimation from Imbalanced Data Distribution. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8141-0_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8140-3

  • Online ISBN: 978-981-99-8141-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics