Abstract
Knowledge distillation is usually performed by promoting a small model (student) to mimic the knowledge of a large model (teacher). The current knowledge distillation methods mainly focus on the extraction and transformation of knowledge while ignoring the importance of examples in the dataset and assigning equal weight to each example. Therefore, in this paper, we propose Dynamic Knowledge Distillation (Dy-KD). To alleviate this problem, Dy-KD incorporates a curriculum strategy to selectively discard easy examples during knowledge distillation. Specifically, we estimate the difficulty level of examples by the predictions from the superior teacher network and divide examples in a dataset into easy examples and hard examples. Subsequently, these examples are given various weights to adjust their contributions to the knowledge transfer. We validate our Dy-KD on CIFAR-100 and Tiny-ImageNet; the experimental results show that: (1) Use the curriculum strategy to discard easy examples to prevent the model’s fitting ability from being consumed by fitting easy examples. (2) Giving hard and easy examples varied weight so that the model emphasizes learning hard examples, which can boost students’ performance. At the same time, our method is easy to build on the existing distillation method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information distillation for knowledge transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9163–9171 (2019)
Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)
Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016)
Ghosh, S., Srinivasa, S.K., Amon, P., Hutter, A., Kaup, A.: Deep network pruning for object detection. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 3915–3919. IEEE (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Hui, T.W., Tang, X., Loy, C.C.: Liteflownet: a lightweight convolutional neural network for optical flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8981–8989 (2018)
Kumar, M., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in Neural Information Processing Systems, vol. 23 (2010)
LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. In: Advances in Neural Information Processing Systems, vol. 2 (1989)
Li, C., et al.: Knowledge condensation distillation. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13671, pp. 19–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20083-0_2
Li, J., Zhou, S., Li, L., Wang, H., Bu, J., Yu, Z.: Dynamic data-free knowledge distillation by easy-to-hard learning strategy. Inf. Sci. 642, 119202 (2023)
Li, L., Jin, Z.: Shadow knowledge distillation: bridging offline and online knowledge transfer. Adv. Neural. Inf. Process. Syst. 35, 635–649 (2022)
Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 116–131 (2018)
Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3967–3976 (2019)
Passalis, N., Tefas, A.: Probabilistic knowledge transfer for deep representation learning. CoRR, abs/1803.10837 1(2), 5 (2018)
Pintea, S.L., Liu, Y., van Gemert, J.C.: Recurrent knowledge distillation. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3393–3397. IEEE (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)
Supancic, J.S., Ramanan, D.: Self-paced learning for long-term tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2379–2386 (2013)
Tang, J., Liu, M., Jiang, N., Cai, H., Yu, W., Zhou, J.: Data-free network pruning for model compression. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2021)
Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv preprint arXiv:1910.10699 (2019)
Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1365–1374 (2019)
Wu, X., Dyer, E., Neyshabur, B.: When do curricula work? arXiv preprint arXiv:2012.03107 (2020)
Yang, J., Martinez, B., Bulat, A., Tzimiropoulos, G.: Knowledge distillation via softmax regression representation learning. In: International Conference on Learning Representations (2020)
Yang, J., Martinez, B., Bulat, A., Tzimiropoulos, G., et al.: Knowledge distillation via softmax regression representation learning. In: International Conference on Learning Representations (ICLR) (2021)
Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)
Zhao, B., Cui, Q., Song, R., Qiu, Y., Liang, J.: Decoupled knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11953–11962 (2022)
Zhao, H., Sun, X., Dong, J., Dong, Z., Li, Q.: Knowledge distillation via instance-level sequence learning. Knowl.-Based Syst. 233, 107519 (2021)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Acknowledgement
This research is supported by Sichuan Science and Technology Program (No. 2022YFG0324), SWUST Doctoral Research Foundation under Grant 19zx7102.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Lin, C., Jiang, N., Tang, J., Huang, X., Wu, W. (2024). Dy-KD: Dynamic Knowledge Distillation for Reduced Easy Examples. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1966. Springer, Singapore. https://doi.org/10.1007/978-981-99-8148-9_18
Download citation
DOI: https://doi.org/10.1007/978-981-99-8148-9_18
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8147-2
Online ISBN: 978-981-99-8148-9
eBook Packages: Computer ScienceComputer Science (R0)