Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dy-KD: Dynamic Knowledge Distillation for Reduced Easy Examples

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1966))

Included in the following conference series:

Abstract

Knowledge distillation is usually performed by promoting a small model (student) to mimic the knowledge of a large model (teacher). The current knowledge distillation methods mainly focus on the extraction and transformation of knowledge while ignoring the importance of examples in the dataset and assigning equal weight to each example. Therefore, in this paper, we propose Dynamic Knowledge Distillation (Dy-KD). To alleviate this problem, Dy-KD incorporates a curriculum strategy to selectively discard easy examples during knowledge distillation. Specifically, we estimate the difficulty level of examples by the predictions from the superior teacher network and divide examples in a dataset into easy examples and hard examples. Subsequently, these examples are given various weights to adjust their contributions to the knowledge transfer. We validate our Dy-KD on CIFAR-100 and Tiny-ImageNet; the experimental results show that: (1) Use the curriculum strategy to discard easy examples to prevent the model’s fitting ability from being consumed by fitting easy examples. (2) Giving hard and easy examples varied weight so that the model emphasizes learning hard examples, which can boost students’ performance. At the same time, our method is easy to build on the existing distillation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information distillation for knowledge transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9163–9171 (2019)

    Google Scholar 

  2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)

    Google Scholar 

  3. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  4. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016)

  5. Ghosh, S., Srinivasa, S.K., Amon, P., Hutter, A., Kaup, A.: Deep network pruning for object detection. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 3915–3919. IEEE (2019)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  8. Hui, T.W., Tang, X., Loy, C.C.: Liteflownet: a lightweight convolutional neural network for optical flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8981–8989 (2018)

    Google Scholar 

  9. Kumar, M., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in Neural Information Processing Systems, vol. 23 (2010)

    Google Scholar 

  10. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. In: Advances in Neural Information Processing Systems, vol. 2 (1989)

    Google Scholar 

  11. Li, C., et al.: Knowledge condensation distillation. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13671, pp. 19–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20083-0_2

    Chapter  Google Scholar 

  12. Li, J., Zhou, S., Li, L., Wang, H., Bu, J., Yu, Z.: Dynamic data-free knowledge distillation by easy-to-hard learning strategy. Inf. Sci. 642, 119202 (2023)

    Article  Google Scholar 

  13. Li, L., Jin, Z.: Shadow knowledge distillation: bridging offline and online knowledge transfer. Adv. Neural. Inf. Process. Syst. 35, 635–649 (2022)

    Google Scholar 

  14. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 116–131 (2018)

    Google Scholar 

  15. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3967–3976 (2019)

    Google Scholar 

  16. Passalis, N., Tefas, A.: Probabilistic knowledge transfer for deep representation learning. CoRR, abs/1803.10837 1(2), 5 (2018)

    Google Scholar 

  17. Pintea, S.L., Liu, Y., van Gemert, J.C.: Recurrent knowledge distillation. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3393–3397. IEEE (2018)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  19. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

  20. Supancic, J.S., Ramanan, D.: Self-paced learning for long-term tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2379–2386 (2013)

    Google Scholar 

  21. Tang, J., Liu, M., Jiang, N., Cai, H., Yu, W., Zhou, J.: Data-free network pruning for model compression. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2021)

    Google Scholar 

  22. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv preprint arXiv:1910.10699 (2019)

  23. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1365–1374 (2019)

    Google Scholar 

  24. Wu, X., Dyer, E., Neyshabur, B.: When do curricula work? arXiv preprint arXiv:2012.03107 (2020)

  25. Yang, J., Martinez, B., Bulat, A., Tzimiropoulos, G.: Knowledge distillation via softmax regression representation learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

  26. Yang, J., Martinez, B., Bulat, A., Tzimiropoulos, G., et al.: Knowledge distillation via softmax regression representation learning. In: International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  27. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)

  28. Zhao, B., Cui, Q., Song, R., Qiu, Y., Liang, J.: Decoupled knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11953–11962 (2022)

    Google Scholar 

  29. Zhao, H., Sun, X., Dong, J., Dong, Z., Li, Q.: Knowledge distillation via instance-level sequence learning. Knowl.-Based Syst. 233, 107519 (2021)

    Article  Google Scholar 

  30. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

Download references

Acknowledgement

This research is supported by Sichuan Science and Technology Program (No. 2022YFG0324), SWUST Doctoral Research Foundation under Grant 19zx7102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, C., Jiang, N., Tang, J., Huang, X., Wu, W. (2024). Dy-KD: Dynamic Knowledge Distillation for Reduced Easy Examples. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1966. Springer, Singapore. https://doi.org/10.1007/978-981-99-8148-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8148-9_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8147-2

  • Online ISBN: 978-981-99-8148-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics