Abstract
Bipartite networks are capable of representing complex systems that involve two distinct types of objects. However, there are limitations to the existing bipartite networks: 1) It is inadequate in characterizing multi-relationships among objects in complex systems, as it is restricted to depict only one type of relationship. 2) It is limited to static representations of complex systems, hampering their ability to describe dynamic changes in the interactions among objects over time. Therefore, the Dynamic Multi-Relationship Bipartite Network (DMBN) model is introduced, which not only models the dynamic multi-relationships between two types of objects in complex systems, but also enables dynamic prediction of the intricate relationships between objects. Extensive experiments were conducted on complex systems, and the results indicate that the DMBN model is significantly better than the baseline methods across multiple evaluation metrics, thereby proving the effectiveness of the DMBN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sun, L.H., He, Q., Teng, Y.Y., Zhao, Q., Yan, X., Wang, X.W.: A complex network-based vaccination strategy for infectious diseases. Appl. Soft Comput. 136, 110081 (2023)
Tocino, A., Serrano, D.H., Hernández-Serrano, J., Villarroel, J.: A stochastic simplicial SIS model for complex networks. Commun. Nonlinear Sci. Numer. Simul. 120, 107161 (2023)
Zhou, Y.R., Chen, Z.Q., Liu, Z.X.: Dynamic analysis and community recognition of stock price based on a complex network perspective. Expert Syst. Appl. 213(1), 118944 (2023)
Vatani, N., Rahmani, A.M., Javadi, H.S.: Personality-based and trust-aware products recommendation in social networks. Appl. Intell. 53(1), 879–903 (2023)
Tan, L., Gong, D.F., Xu, J.M., Li, Z.Y., Liu, F.L.: Meta-path fusion based neural recommendation in heterogeneous information networks. Neurocomputing 529, 236–248 (2023)
Wu, H.X., Song, C.Y., Ge, Y., Ge, T.J.: Link prediction on complex networks: an experimental survey. Data Sci. Eng. 7(3), 253–278 (2022)
Zhang, L.L., Zhao, M.H., Zhao, D.Z.: Bipartite graph link prediction method with homogeneous nodes similarity for music recommendation. Multimedia Tools Appli. 79(19-20), 13197-13215 (2020)
Zhou, C.Q., Zhang, J., Gao, K.S., Li, Q.M., Hu, D.M., Sheng, V.S.: Bipartite network embedding with symmetric neighborhood convolution. Expert Syst. Appl. 198, 116757 (2022)
Cimini, G., Carra, A., Didomenicantonio, L., Zaccaria, A.: Meta-validation of bipartite network projections. Commun. Phys. 5(1), 76 (2022)
Valejo, A., Santos, W., Naldi, M.C., Zhao, L.: A review and comparative analysis of coarsening algorithms on bipartite networks. Euro. Phys. J. Special Topics 230, 2801-2811 (2021)
Valejo, A., Faleiros, T., Oliveira, M.C.F., Lopes, A.A.: A coarsening method for bipartite networks via weight-constrained label propagation. Knowl.-Based Syst. 195, 105678 (2020)
Liu, G.G.: An ecommerce recommendation algorithm based on link prediction. Alex. Eng. J. 61(1), 905–910 (2022)
Zhang, G.Z., Li, S.Z., Dou, X.R., Shang, J.L., Ren, Q.Q., Gao, Y.L.: Predicting LncRNA-disease associations based on LncRNA-MiRNA-disease multilayer association network and bipartite network recommendation. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 2216–2223. IEEE, USA (2022)
Wang, G.L., Yu, J., Nguyen, M., Zhang, Y.Q., Yongchareon, S., Han, Y.B.: Motif-based graph attentional neural network for web service recommendation. Knowl.-Based Syst. 269(7), 110512 (2023)
Li, C.Y., et al.: Multiplex network community detection algorithm based on motif awareness. Knowl.-Based Syst. 260(25), 110136 (2023)
Magnani, M., Rossi, L.: Towards effective visual analytics on multiplex and multilayer networks. Chaos, Solitons Fractals 72, 68–76 (2015)
Xia, L.H., Huang, C., Xu, Y., Pei, J.: Multi-behavior sequential recommendation with temporal graph transformer. IEEE Trans. Knowl. Data Eng. 35(6), 6099–6112 (2023)
Singh, D.K., Haraty, R., Debnath, N., Choudhury, P.: an analysis of the dynamic community detection algorithms in complex networks. In: IEEE International Conference on Industrial Technology, pp. 989–994. IEEE, Argentina (2020)
Xue, H., Yang, L., Jiang, W., Wei, Y., Hu, Y., Lin, Yu.: Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal RNN. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 282–298. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_17
Fu, H.T., Huang, F., Liu, X., Qiu, Y., Zhang, W.: MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks. Bioinformatics 38(2), 426–434 (2022)
Jafari, M., et al.: Bipartite network models to design combination therapies in acute myeloid leukaemia. Nat. Commun. 13(1), 2128 (2022)
Zhang, X.H., Wang, H.C., Yu, J.K., Chen, C., Wang, X.Y., Zhang, W.J.: Bipartite graph capsule network. World Wide Web 26(1), 421–440 (2023)
Zhuo, J.W., et al.: Learning optimal tree models under beam search. In: the 37th International Conference on Machine Learning, pp. 11650–11659. PMLR, Virtual Event (2020)
Xue, H.J., Dai, X.Y., Zhang, J.B., Huang, S.J., Chen, J.J.: Deep matrix factorization models for recommender systems. In: the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 3203–3209. ijcai.org, Australia (2017)
Zou, G.B., Yang, S., Duan, S.Y., Zhang, B.F., Gan, Y.L., Chen, Y.X.: DeepLTSC: long-tail service classification via integrating category attentive deep neural network and feature augmentation. IEEE Trans. Netw. Serv. Manage. 19(2), 922–935 (2022)
Zou, G.B., et al.: DeepTSQP: temporal-aware service QoS prediction via deep neural network and feature integration. Knowl.-Based Syst. 241(6), 108062 (2022)
Lv, H.H., Zhang, B.F., Hu, S.X., Xu, Z.K.: Deep link-prediction based on the local structure of bipartite networks. Entropy 24(5), 610 (2022)
Lv, H.H., Zhang, B.F., Li, T.T., Hu, S.X.: Construction and analysis of multi-relationship bipartite network model. Complex Intell. Syst. Early Access (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Lv, H., Zou, G., Zhang, B. (2024). Construction and Prediction of a Dynamic Multi-relationship Bipartite Network. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_25
Download citation
DOI: https://doi.org/10.1007/978-981-99-8145-8_25
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8144-1
Online ISBN: 978-981-99-8145-8
eBook Packages: Computer ScienceComputer Science (R0)