Nothing Special   »   [go: up one dir, main page]

Skip to main content

Construction and Prediction of a Dynamic Multi-relationship Bipartite Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1965))

Included in the following conference series:

Abstract

Bipartite networks are capable of representing complex systems that involve two distinct types of objects. However, there are limitations to the existing bipartite networks: 1) It is inadequate in characterizing multi-relationships among objects in complex systems, as it is restricted to depict only one type of relationship. 2) It is limited to static representations of complex systems, hampering their ability to describe dynamic changes in the interactions among objects over time. Therefore, the Dynamic Multi-Relationship Bipartite Network (DMBN) model is introduced, which not only models the dynamic multi-relationships between two types of objects in complex systems, but also enables dynamic prediction of the intricate relationships between objects. Extensive experiments were conducted on complex systems, and the results indicate that the DMBN model is significantly better than the baseline methods across multiple evaluation metrics, thereby proving the effectiveness of the DMBN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, L.H., He, Q., Teng, Y.Y., Zhao, Q., Yan, X., Wang, X.W.: A complex network-based vaccination strategy for infectious diseases. Appl. Soft Comput. 136, 110081 (2023)

    Article  Google Scholar 

  2. Tocino, A., Serrano, D.H., Hernández-Serrano, J., Villarroel, J.: A stochastic simplicial SIS model for complex networks. Commun. Nonlinear Sci. Numer. Simul. 120, 107161 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhou, Y.R., Chen, Z.Q., Liu, Z.X.: Dynamic analysis and community recognition of stock price based on a complex network perspective. Expert Syst. Appl. 213(1), 118944 (2023)

    Article  Google Scholar 

  4. Vatani, N., Rahmani, A.M., Javadi, H.S.: Personality-based and trust-aware products recommendation in social networks. Appl. Intell. 53(1), 879–903 (2023)

    Article  Google Scholar 

  5. Tan, L., Gong, D.F., Xu, J.M., Li, Z.Y., Liu, F.L.: Meta-path fusion based neural recommendation in heterogeneous information networks. Neurocomputing 529, 236–248 (2023)

    Article  Google Scholar 

  6. Wu, H.X., Song, C.Y., Ge, Y., Ge, T.J.: Link prediction on complex networks: an experimental survey. Data Sci. Eng. 7(3), 253–278 (2022)

    Article  Google Scholar 

  7. Zhang, L.L., Zhao, M.H., Zhao, D.Z.: Bipartite graph link prediction method with homogeneous nodes similarity for music recommendation. Multimedia Tools Appli. 79(19-20), 13197-13215 (2020)

    Google Scholar 

  8. Zhou, C.Q., Zhang, J., Gao, K.S., Li, Q.M., Hu, D.M., Sheng, V.S.: Bipartite network embedding with symmetric neighborhood convolution. Expert Syst. Appl. 198, 116757 (2022)

    Article  Google Scholar 

  9. Cimini, G., Carra, A., Didomenicantonio, L., Zaccaria, A.: Meta-validation of bipartite network projections. Commun. Phys. 5(1), 76 (2022)

    Article  Google Scholar 

  10. Valejo, A., Santos, W., Naldi, M.C., Zhao, L.: A review and comparative analysis of coarsening algorithms on bipartite networks. Euro. Phys. J. Special Topics 230, 2801-2811 (2021)

    Google Scholar 

  11. Valejo, A., Faleiros, T., Oliveira, M.C.F., Lopes, A.A.: A coarsening method for bipartite networks via weight-constrained label propagation. Knowl.-Based Syst. 195, 105678 (2020)

    Article  Google Scholar 

  12. Liu, G.G.: An ecommerce recommendation algorithm based on link prediction. Alex. Eng. J. 61(1), 905–910 (2022)

    Article  Google Scholar 

  13. Zhang, G.Z., Li, S.Z., Dou, X.R., Shang, J.L., Ren, Q.Q., Gao, Y.L.: Predicting LncRNA-disease associations based on LncRNA-MiRNA-disease multilayer association network and bipartite network recommendation. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 2216–2223. IEEE, USA (2022)

    Google Scholar 

  14. Wang, G.L., Yu, J., Nguyen, M., Zhang, Y.Q., Yongchareon, S., Han, Y.B.: Motif-based graph attentional neural network for web service recommendation. Knowl.-Based Syst. 269(7), 110512 (2023)

    Article  Google Scholar 

  15. Li, C.Y., et al.: Multiplex network community detection algorithm based on motif awareness. Knowl.-Based Syst. 260(25), 110136 (2023)

    Article  Google Scholar 

  16. Magnani, M., Rossi, L.: Towards effective visual analytics on multiplex and multilayer networks. Chaos, Solitons Fractals 72, 68–76 (2015)

    Article  MathSciNet  Google Scholar 

  17. Xia, L.H., Huang, C., Xu, Y., Pei, J.: Multi-behavior sequential recommendation with temporal graph transformer. IEEE Trans. Knowl. Data Eng. 35(6), 6099–6112 (2023)

    Google Scholar 

  18. Singh, D.K., Haraty, R., Debnath, N., Choudhury, P.: an analysis of the dynamic community detection algorithms in complex networks. In: IEEE International Conference on Industrial Technology, pp. 989–994. IEEE, Argentina (2020)

    Google Scholar 

  19. Xue, H., Yang, L., Jiang, W., Wei, Y., Hu, Y., Lin, Yu.: Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal RNN. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 282–298. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_17

    Chapter  Google Scholar 

  20. Fu, H.T., Huang, F., Liu, X., Qiu, Y., Zhang, W.: MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks. Bioinformatics 38(2), 426–434 (2022)

    Article  Google Scholar 

  21. Jafari, M., et al.: Bipartite network models to design combination therapies in acute myeloid leukaemia. Nat. Commun. 13(1), 2128 (2022)

    Article  MathSciNet  Google Scholar 

  22. Zhang, X.H., Wang, H.C., Yu, J.K., Chen, C., Wang, X.Y., Zhang, W.J.: Bipartite graph capsule network. World Wide Web 26(1), 421–440 (2023)

    Article  Google Scholar 

  23. Zhuo, J.W., et al.: Learning optimal tree models under beam search. In: the 37th International Conference on Machine Learning, pp. 11650–11659. PMLR, Virtual Event (2020)

    Google Scholar 

  24. Xue, H.J., Dai, X.Y., Zhang, J.B., Huang, S.J., Chen, J.J.: Deep matrix factorization models for recommender systems. In: the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 3203–3209. ijcai.org, Australia (2017)

    Google Scholar 

  25. Zou, G.B., Yang, S., Duan, S.Y., Zhang, B.F., Gan, Y.L., Chen, Y.X.: DeepLTSC: long-tail service classification via integrating category attentive deep neural network and feature augmentation. IEEE Trans. Netw. Serv. Manage. 19(2), 922–935 (2022)

    Article  Google Scholar 

  26. Zou, G.B., et al.: DeepTSQP: temporal-aware service QoS prediction via deep neural network and feature integration. Knowl.-Based Syst. 241(6), 108062 (2022)

    Article  MathSciNet  Google Scholar 

  27. Lv, H.H., Zhang, B.F., Hu, S.X., Xu, Z.K.: Deep link-prediction based on the local structure of bipartite networks. Entropy 24(5), 610 (2022)

    Article  MathSciNet  Google Scholar 

  28. Lv, H.H., Zhang, B.F., Li, T.T., Hu, S.X.: Construction and analysis of multi-relationship bipartite network model. Complex Intell. Syst. Early Access (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobing Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, H., Zou, G., Zhang, B. (2024). Construction and Prediction of a Dynamic Multi-relationship Bipartite Network. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8145-8_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8144-1

  • Online ISBN: 978-981-99-8145-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics