Nothing Special   »   [go: up one dir, main page]

Skip to main content

Correlation-Distance Graph Learning for Treatment Response Prediction from rs-fMRI

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Resting-state fMRI (rs-fMRI) functional connectivity (FC) analysis provides valuable insights into the relationships between different brain regions and their potential implications for neurological or psychiatric disorders. However, specific design efforts to predict treatment response from rs-fMRI remain limited due to difficulties in understanding the current brain state and the underlying mechanisms driving the observed patterns, which limited the clinical application of rs-fMRI. To overcome that, we propose a graph learning framework that captures comprehensive features by integrating both correlation and distance-based similarity measures under a contrastive loss. This approach results in a more expressive framework that captures brain dynamic features at different scales and enables more accurate prediction of treatment response. Our experiments on the chronic pain and depersonalization disorder datasets demonstrate that our proposed method outperforms current methods in different scenarios. To the best of our knowledge, we are the first to explore the integration of distance-based and correlation-based neural similarity into graph learning for treatment response prediction.

This research is supported in part by the Beijing Hospitals Authority Youth Program (ref: QML20191901), Beijing Hospitals Authority Clinical Medicine Development of Special Funding (ref: ZYLX202129), Beijing Hospitals Authority’s Ascent Plan (ref: DFL20191901), Training Plan for High Level Public Health Technical Talents Construction Project (ref: TTL-02-40), Research Cultivation Program of Beijing Municipal Hospital (ref: PZ2023032), EPSRC NortHFutures project (ref: EP/X031012/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 26 November 2023

    A correction has been published.

References

  1. Khosla, M., Jamison, K., Ngo, G.H., Kuceyeski, A., Sabuncu, M.R.: Machine learning in resting-state fMRI analysis. Magn. Reson. Imaging 64, 101–121 (2019)

    Article  Google Scholar 

  2. Du, Y., Fu, Z., Calhoun, V.D.: Classification and prediction of brain disorders using functional connectivity: promising but challenging. Front. Neurosci. 12, 525 (2018)

    Article  Google Scholar 

  3. Taylor, J.J., Kurt, H.G., Anand, A.: Resting state functional connectivity biomarkers of treatment response in mood disorders: a review. Front. Psych. 12, 565136 (2021)

    Article  Google Scholar 

  4. Kong, Y., et al.: Spatio-temporal graph convolutional network for diagnosis and treatment response prediction of major depressive disorder from functional connectivity. Hum. Brain Map. 42(12), 3922–3933 (2021)

    Article  Google Scholar 

  5. Bobadilla-Suarez, S., Ahlheim, C., Mehrotra, A., Panos, A., Love, B.C.: Measures of neural similarity. Comput. Brain Behav. 3, 369–383 (2020)

    Article  Google Scholar 

  6. Xiao, L., et al.: Distance correlation-based brain functional connectivity estimation and non-convex multi-task learning for developmental fMRI studies. IEEE Trans. Biomed. Eng. 69(10), 3039–3050 (2022)

    Article  MathSciNet  Google Scholar 

  7. Wang, J., Zuo, X., He, Y.: Graph-based network analysis of resting-state functional MRI. Front. Syst. Neurosci. 4, 1419 (2010)

    Google Scholar 

  8. Zhou, J., Cui, G., Hu, S., et al.: Graph neural networks: a review of methods and applications. AI Open. 1, 57–81 (2020)

    Article  Google Scholar 

  9. Yu, Q., et al.: Application of graph theory to assess static and dynamic brain connectivity: approaches for building brain graphs. Proc. IEEE 106(5), 886–906 (2018)

    Article  Google Scholar 

  10. Kan, X., Dai, W., Cui, H., Zhang, Z., Guo, Y., Yang, C.: Brain network transformer. In: Advances in Neural Information Processing Systems, vol. 35, pp. 25586–25599 (2022)

    Google Scholar 

  11. Dahan, S., Williams, L.Z.J., Rueckert, D., Robinson, E.C.: Improving phenotype prediction using long-range spatio-temporal dynamics of functional connectivity. In: Abdulkadir, A., et al. (eds.) MLCN 2021. LNCS, vol. 13001, pp. 145–154. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87586-2_15

    Chapter  Google Scholar 

  12. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-temporal graph convolution for resting-state fMRI analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part VII. LNCS, vol. 12267, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52

    Chapter  Google Scholar 

  13. Kim, B.H., Ye, J.C., Kim, J.J.: Learning dynamic graph representation of brain connectome with spatio-temporal attention. In: Advances in Neural Information Processing Systems, vol. 34, pp. 4314–4327 (2021)

    Google Scholar 

  14. Chang, C., Glover, G.H.: Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50(1), 81–98 (2010)

    Article  Google Scholar 

  15. Xu, K., Hu, W., Leskovec, J., Jegelka, S. How powerful are graph neural networks?. arXiv preprint arXiv:1810.00826 (2018)

  16. Cao, B., et al.: Treatment response prediction and individualized identification of first-episode drug-naive schizophrenia using brain functional connectivity. Mol. Psychiatry 25(4), 906–913 (2020)

    Article  Google Scholar 

  17. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  Google Scholar 

  18. Woo, S., Park, J., Lee, J. Y., Kweon, I. S. CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision, pp. 3–19 (2018)

    Google Scholar 

  19. Tétreault, P., Mansour, A., Vachon-Presseau, E., Schnitzer, T.J., Apkarian, A.V., Baliki, M.N.: Brain connectivity predicts placebo response across chronic pain clinical trials. PLoS Biol. 14(10), e1002570 (2016)

    Article  Google Scholar 

  20. Ma, H., Wu, F., Guan, Y., Xu, L., Liu, J., Tian, L.: BrainNet with connectivity attention for individualized predictions based on multi-facet connections extracted from resting-state fMRI data. Cognit. Comput. 15, 1–15 (2023). https://doi.org/10.1007/s12559-023-10133-8

    Article  Google Scholar 

  21. Del Fabro, L., Bondi, E., Serio, F., Maggioni, E., D’Agostino, A., Brambilla, P.: Machine learning methods to predict outcomes of pharmacological treatment in psychosis. Transl. Psychiatry 13(1), 75 (2023)

    Article  Google Scholar 

  22. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  23. Faria, A.V., et al.: Atlas-based analysis of resting-state functional connectivity: evaluation for reproducibility and multi-modal anatomy-function correlation studies. Neuroimage 61(3), 613–621 (2012)

    Article  Google Scholar 

  24. Janse, R.J., et al.: Conducting correlation analysis: important limitations and pitfalls. Clin. Kidney J. 14(11), 2332–2337 (2021)

    Article  Google Scholar 

  25. Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., Diedrichsen, J.: Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage 137, 188–200 (2016)

    Article  Google Scholar 

  26. Perlibakas, V.: Distance measures for PCA-based face recognition. Pattern Recogn. Lett. 25(6), 711–724 (2004)

    Article  Google Scholar 

  27. Smitha, K.A., et al.: Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol. J. 30(4), 305–317 (2017)

    Article  Google Scholar 

  28. Thompson, G.J.: Neural and metabolic basis of dynamic resting state fMRI. Neuroimage 180, 448–462 (2018)

    Article  Google Scholar 

  29. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over streaming data. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 633–634 (2002)

    Google Scholar 

  30. Kim, B.H., Ye, J.C.: Understanding graph isomorphism network for RS-fMRI functional connectivity analysis. Front. Neurosci. 14, 630 (2020)

    Article  Google Scholar 

  31. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  32. Wang, X., Yao, L., Rekik, I., Zhang, Y.: Contrastive Functional Connectivity Graph Learning for Population-based fMRI Classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. MICCAI 2022. LNCS, Part I, vol. 13431, pp. 221–230. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_21

  33. Olszowy, W., Aston, J., Rua, C., Williams, G.B.: Accurate autocorrelation modeling substantially improves fMRI reliability. Nat. Commun. 10(1), 1220 (2019)

    Article  Google Scholar 

  34. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597-1607. PMLR (2020)

    Google Scholar 

  35. Dwivedi, C., Nofallah, S., Pouryahya, M., et al.: Multi stain graph fusion for multimodal integration in pathology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1835-1845 (2022)

    Google Scholar 

  36. Zheng, S., et al.: Potential targets for noninvasive brain stimulation on depersonalization-derealization disorder. Brain Sci. 12(8), 1112 (2022)

    Article  MathSciNet  Google Scholar 

  37. Sierra, M., Berrios, G.E.: The Cambridge depersonalisation scale: a new instrument for the measurement of depersonalisation. Psychiatry Res. 93(2), 153–164 (2000)

    Article  Google Scholar 

  38. Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F.: DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14, 339–351 (2016)

    Article  Google Scholar 

  39. Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)

    Article  Google Scholar 

  40. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  41. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  42. Kesler, S.R., Rao, A., Blayney, D.W., Oakley-Girvan, I.A., Karuturi, M., Palesh, O.: Predicting long-term cognitive outcome following breast cancer with pre-treatment resting state fMRI and random forest machine learning. Front. Hum. Neurosci. 11, 555 (2017)

    Article  Google Scholar 

  43. Chang, Z., Koulieris, G.A., Shum, H.P.: On the design fundamentals of diffusion models: a survey. arXiv preprint arXiv:2306.04542 (2023)

  44. Zhang, X., Al Moubayed, N., Shum, H.P.: Towards graph representation learning based surgical workflow anticipation. In: 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics, pp. 01–04 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hubert P. H. Shum or Hongxiao Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, F.X. et al. (2024). Correlation-Distance Graph Learning for Treatment Response Prediction from rs-fMRI. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1963. Springer, Singapore. https://doi.org/10.1007/978-981-99-8138-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8138-0_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8137-3

  • Online ISBN: 978-981-99-8138-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics