Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Health Evaluation Algorithm for Edge Nodes Based on LSTM

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1961))

Included in the following conference series:

  • 631 Accesses

Abstract

The health state of edge layer nodes significantly affects the reliability of the calculation and the development of related applications. Edge layer nodes health assessment is adopted to forecast node state to arrange calculation and application reasonably. The existing multidimensional data evaluation algorithms have achieved good predictive performance. However, with a small scale of training data, those algorithms could easily encounter overfitting and poor robustness. Therefore, we propose an evaluation algorithm based on the multidimensional operation data of edge layer nodes in this study. In order to solve the problem above, we propose an improved Long Short Term Memory (LSTM) model to implement the evaluation. We add feature discretization and annealing processes to the model to reduce the risk of model overfitting. Compared with typical time series prediction models, the proposed LSTM model has stronger applicability and better accuracy in the evaluation of network delay of edge layer nodes in our experiment.

Q. Sun and Z. Wang—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chadza, T., Kyriakopoulos, K.G., Lambotharan, S.: Contemporary sequential network attacks prediction using hidden Markov model. In: 2019 17th International Conference on Privacy, Security and Trust (PST), pp. 1–3. IEEE (2019)

    Google Scholar 

  2. Choi, Y., Lim, H., Choi, H., Kim, I.J.: GAN-based anomaly detection and localization of multivariate time series data for power plant. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 71–74. IEEE (2020)

    Google Scholar 

  3. Graves, A.: Supervised sequence labelling. In: Graves, A. (ed.) Supervised Sequence Labelling with Recurrent Neural Networks, pp. 5–13. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2_2

    Chapter  MATH  Google Scholar 

  4. Hochreiter, S., Schmidhuber, J., et al.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  5. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  6. Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM fully convolutional networks for time series classification. IEEE Access 6, 1662–1669 (2017)

    Article  Google Scholar 

  7. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  8. Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al.: Long short term memory networks for anomaly detection in time series. In: ESANN, vol. 2015, p. 89 (2015)

    Google Scholar 

  9. Qiao, L., Liu, D., Yuan, X., Wang, Q., Ma, Q.: Generation and prediction of construction and demolition waste using exponential smoothing method: a case study of Shandong Province, China. Sustainability 12(12), 5094 (2020)

    Article  Google Scholar 

  10. Saini, R., Roy, P.P., Dogra, D.P.: A segmental hmm based trajectory classification using genetic algorithm. Expert Syst. Appl. 93, 169–181 (2018)

    Article  Google Scholar 

  11. Schaffer, A.L., Dobbins, T.A., Pearson, S.A.: Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions. BMC Med. Res. Methodol. 21(1), 1–12 (2021)

    Article  Google Scholar 

  12. Wang, L., Yang, C., Sun, Y., Zhang, H., Li, M.: Effective variable selection and moving window hmm-based approach for iron-making process monitoring. J. Process Control 68, 86–95 (2018)

    Article  Google Scholar 

  13. Wang, S., Chen, J., Wang, H., Zhang, D.: Degradation evaluation of slewing bearing using hmm and improved GRU. Measurement 146, 385–395 (2019)

    Article  Google Scholar 

  14. Wang, S., Xiang, J., Zhong, Y., Zhou, Y.: Convolutional neural network-based hidden Markov models for rolling element bearing fault identification. Knowl.-Based Syst. 144, 65–76 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiarui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Q., Wang, Z., Zhang, J., Liu, Q., Zhang, X. (2024). A Health Evaluation Algorithm for Edge Nodes Based on LSTM. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1961. Springer, Singapore. https://doi.org/10.1007/978-981-99-8126-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8126-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8125-0

  • Online ISBN: 978-981-99-8126-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics