Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Fast and Scalable Frame-Recurrent Video Super-Resolution Framework

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

The video super-resolution(VSR) methods based on deep learning have become the mainstream VSR methods and have been widely used in various fields. Although many deep learning-based VSR methods have been proposed, they cannot be applied to real-time VSR tasks due to the vast computation and memory occupation. The lightweight VSR networks have faster inference speeds, but their super-resolution performance could be better. In this paper, we analyze the explicit and implicit motion compensation methods commonly used in VSR networks and design a fast and scalable frame-recurrent VSR network(FFRVSR). FFRVSR incorporates the Frame-Recurrent Network and Recurrent-Residual Network. This network structure can extract information from low-resolution video frames more efficiently and alleviate error accumulation during inference. We also design a super-resolution flow estimation network(SRFnet) that can more accurately estimate optical flow between video frames while reducing error information ingress. Extensive experiments demonstrate that the proposed FFRVSR surpasses state-of-the-art methods in terms of inference speed. FFRVSR also has strong scalability and can be adapted for both real-time video super-resolution tasks and high-quality video super-resolution tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caballero, J., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4778–4787 (2017)

    Google Scholar 

  2. Cao, Y., Wang, C., Song, C., Tang, Y., Li, H.: Real-time super-resolution system of 4k-video based on deep learning. In: 2021 IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 69–76. IEEE (2021)

    Google Scholar 

  3. Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: BasicVSR: the search for essential components in video super-resolution and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4947–4956 (2021)

    Google Scholar 

  4. Chu, M., Xie, Y., Mayer, J., Leal-Taixé, L., Thuerey, N.: Learning temporal coherence via self-supervision for GAN-based video generation. ACM Trans. Graph. (TOG) 39(4), 1–75 (2020)

    Article  Google Scholar 

  5. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  6. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. (TOG) 30(2), 1–11 (2011)

    Article  Google Scholar 

  7. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  8. Fuoli, D., Gu, S., Timofte, R.: Efficient video super-resolution through recurrent latent space propagation. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3476–3485. IEEE (2019)

    Google Scholar 

  9. Goto, T., Fukuoka, T., Nagashima, F., Hirano, S., Sakurai, M.: Super-resolution system for 4k-HDTV. In: 2014 22nd International Conference on Pattern Recognition, pp. 4453–4458. IEEE (2014)

    Google Scholar 

  10. Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-domain super-resolution for face recognition. IEEE Trans. Image Process. 12(5), 597–606 (2003)

    Article  Google Scholar 

  11. Haris, M., Shakhnarovich, G., Ukita, N.: Recurrent back-projection network for video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3897–3906 (2019)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  13. Huang, Y., Wang, W., Wang, L.: Bidirectional recurrent convolutional networks for multi-frame super-resolution. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  14. Isobe, T., et al.: Look back and forth: video super-resolution with explicit temporal difference modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17411–17420 (2022)

    Google Scholar 

  15. Isobe, T., et al.: Video super-resolution with temporal group attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8008–8017 (2020)

    Google Scholar 

  16. Isobe, T., Zhu, F., Jia, X., Wang, S.: Revisiting temporal modeling for video super-resolution. arXiv preprint arXiv:2008.05765 (2020)

  17. Jo, Y., Oh, S.W., Kang, J., Kim, S.J.: Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3224–3232 (2018)

    Google Scholar 

  18. Kappeler, A., Yoo, S., Dai, Q., Katsaggelos, A.K.: Video super-resolution with convolutional neural networks. IEEE Trans. Comput. Imaging 2(2), 109–122 (2016)

    Article  MathSciNet  Google Scholar 

  19. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep Laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2599–2613 (2018)

    Article  Google Scholar 

  20. Liu, C., Sun, D.: On Bayesian adaptive video super resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 346–360 (2013)

    Article  Google Scholar 

  21. Liu, H., Ruan, Z., Zhao, P., Dong, C., Shang, F., Liu, Y., Yang, L., Timofte, R.: Video super-resolution based on deep learning: a comprehensive survey. Artif. Intell. Rev. 55(8), 5981–6035 (2022)

    Article  Google Scholar 

  22. Mahapatra, D., Bozorgtabar, B., Garnavi, R.: Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput. Med. Imaging Graph. 71, 30–39 (2019)

    Article  Google Scholar 

  23. Nah, S., et al.: NTIRE 2019 challenge on video deblurring and super-resolution: dataset and study. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  24. Park, G., Park, B., Kwon, S.J., Kim, B., Lee, Y., Lee, D.: nuQmm: quantized MatMul for efficient inference of large-scale generative language models. arXiv preprint arXiv:2206.09557 (2022)

  25. Sajjadi, M.S., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6626–6634 (2018)

    Google Scholar 

  26. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  27. Tao, X., Gao, H., Liao, R., Wang, J., Jia, J.: Detail-revealing deep video super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4472–4480 (2017)

    Google Scholar 

  28. Wang, L., Guo, Y., Lin, Z., Deng, X., An, W.: Learning for video super-resolution through HR optical flow estimation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11361, pp. 514–529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20887-5_32

    Chapter  Google Scholar 

  29. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  30. Wang, Z., et al.: Multi-memory convolutional neural network for video super-resolution. IEEE Trans. Image Process. 28(5), 2530–2544 (2018)

    Article  MathSciNet  Google Scholar 

  31. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vision 127, 1106–1125 (2019)

    Article  Google Scholar 

  32. Yan, B., Lin, C., Tan, W.: Frame and feature-context video super-resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5597–5604 (2019)

    Google Scholar 

  33. Yang, C.-Y., Huang, J.-B., Yang, M.-H.: Exploiting self-similarities for single frame super-resolution. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 497–510. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19318-7_39

    Chapter  Google Scholar 

  34. Yi, P., Wang, Z., Jiang, K., Jiang, J., Ma, J.: Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3106–3115 (2019)

    Google Scholar 

  35. Yoo, J., Lee, S., Kwak, N.: Image restoration by estimating frequency distribution of local patches. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6684–6692 (2018)

    Google Scholar 

  36. Zhang, L., Zhang, H., Shen, H., Li, P.: A super-resolution reconstruction algorithm for surveillance images. Signal Process. 90(3), 848–859 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 62176161, and the Scientific Research and Development Foundations of Shenzhen under Grant JCYJ20220818100005011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, K., Luo, J. (2024). A Fast and Scalable Frame-Recurrent Video Super-Resolution Framework. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8070-3_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8069-7

  • Online ISBN: 978-981-99-8070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics