Abstract
The video super-resolution(VSR) methods based on deep learning have become the mainstream VSR methods and have been widely used in various fields. Although many deep learning-based VSR methods have been proposed, they cannot be applied to real-time VSR tasks due to the vast computation and memory occupation. The lightweight VSR networks have faster inference speeds, but their super-resolution performance could be better. In this paper, we analyze the explicit and implicit motion compensation methods commonly used in VSR networks and design a fast and scalable frame-recurrent VSR network(FFRVSR). FFRVSR incorporates the Frame-Recurrent Network and Recurrent-Residual Network. This network structure can extract information from low-resolution video frames more efficiently and alleviate error accumulation during inference. We also design a super-resolution flow estimation network(SRFnet) that can more accurately estimate optical flow between video frames while reducing error information ingress. Extensive experiments demonstrate that the proposed FFRVSR surpasses state-of-the-art methods in terms of inference speed. FFRVSR also has strong scalability and can be adapted for both real-time video super-resolution tasks and high-quality video super-resolution tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Caballero, J., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4778–4787 (2017)
Cao, Y., Wang, C., Song, C., Tang, Y., Li, H.: Real-time super-resolution system of 4k-video based on deep learning. In: 2021 IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 69–76. IEEE (2021)
Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: BasicVSR: the search for essential components in video super-resolution and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4947–4956 (2021)
Chu, M., Xie, Y., Mayer, J., Leal-Taixé, L., Thuerey, N.: Learning temporal coherence via self-supervision for GAN-based video generation. ACM Trans. Graph. (TOG) 39(4), 1–75 (2020)
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. (TOG) 30(2), 1–11 (2011)
Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)
Fuoli, D., Gu, S., Timofte, R.: Efficient video super-resolution through recurrent latent space propagation. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3476–3485. IEEE (2019)
Goto, T., Fukuoka, T., Nagashima, F., Hirano, S., Sakurai, M.: Super-resolution system for 4k-HDTV. In: 2014 22nd International Conference on Pattern Recognition, pp. 4453–4458. IEEE (2014)
Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-domain super-resolution for face recognition. IEEE Trans. Image Process. 12(5), 597–606 (2003)
Haris, M., Shakhnarovich, G., Ukita, N.: Recurrent back-projection network for video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3897–3906 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
Huang, Y., Wang, W., Wang, L.: Bidirectional recurrent convolutional networks for multi-frame super-resolution. In: Advances in Neural Information Processing Systems 28 (2015)
Isobe, T., et al.: Look back and forth: video super-resolution with explicit temporal difference modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17411–17420 (2022)
Isobe, T., et al.: Video super-resolution with temporal group attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8008–8017 (2020)
Isobe, T., Zhu, F., Jia, X., Wang, S.: Revisiting temporal modeling for video super-resolution. arXiv preprint arXiv:2008.05765 (2020)
Jo, Y., Oh, S.W., Kang, J., Kim, S.J.: Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3224–3232 (2018)
Kappeler, A., Yoo, S., Dai, Q., Katsaggelos, A.K.: Video super-resolution with convolutional neural networks. IEEE Trans. Comput. Imaging 2(2), 109–122 (2016)
Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep Laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2599–2613 (2018)
Liu, C., Sun, D.: On Bayesian adaptive video super resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 346–360 (2013)
Liu, H., Ruan, Z., Zhao, P., Dong, C., Shang, F., Liu, Y., Yang, L., Timofte, R.: Video super-resolution based on deep learning: a comprehensive survey. Artif. Intell. Rev. 55(8), 5981–6035 (2022)
Mahapatra, D., Bozorgtabar, B., Garnavi, R.: Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput. Med. Imaging Graph. 71, 30–39 (2019)
Nah, S., et al.: NTIRE 2019 challenge on video deblurring and super-resolution: dataset and study. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Park, G., Park, B., Kwon, S.J., Kim, B., Lee, Y., Lee, D.: nuQmm: quantized MatMul for efficient inference of large-scale generative language models. arXiv preprint arXiv:2206.09557 (2022)
Sajjadi, M.S., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6626–6634 (2018)
Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Tao, X., Gao, H., Liao, R., Wang, J., Jia, J.: Detail-revealing deep video super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4472–4480 (2017)
Wang, L., Guo, Y., Lin, Z., Deng, X., An, W.: Learning for video super-resolution through HR optical flow estimation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11361, pp. 514–529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20887-5_32
Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Wang, Z., et al.: Multi-memory convolutional neural network for video super-resolution. IEEE Trans. Image Process. 28(5), 2530–2544 (2018)
Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vision 127, 1106–1125 (2019)
Yan, B., Lin, C., Tan, W.: Frame and feature-context video super-resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5597–5604 (2019)
Yang, C.-Y., Huang, J.-B., Yang, M.-H.: Exploiting self-similarities for single frame super-resolution. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 497–510. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19318-7_39
Yi, P., Wang, Z., Jiang, K., Jiang, J., Ma, J.: Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3106–3115 (2019)
Yoo, J., Lee, S., Kwak, N.: Image restoration by estimating frequency distribution of local patches. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6684–6692 (2018)
Zhang, L., Zhang, H., Shen, H., Li, P.: A super-resolution reconstruction algorithm for surveillance images. Signal Process. 90(3), 848–859 (2010)
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant 62176161, and the Scientific Research and Development Foundations of Shenzhen under Grant JCYJ20220818100005011.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Hou, K., Luo, J. (2024). A Fast and Scalable Frame-Recurrent Video Super-Resolution Framework. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_24
Download citation
DOI: https://doi.org/10.1007/978-981-99-8070-3_24
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8069-7
Online ISBN: 978-981-99-8070-3
eBook Packages: Computer ScienceComputer Science (R0)