Abstract
The design of plane-sweep deep MVS primarily relies on patch-similarity based matching. However, this approach becomes impractical when dealing with low-textured, similar-textured and reflective regions in the scene, resulting in inaccurate matching results. One of the methods to avoid this kind of error is incorporating semantic information in matching process. In this paper, we propose an end-to-end method that uses monocular depth estimation to add semantic information to deep MVS. Additionally, we analyze the advantages and disadvantages of two main depth representations and propose a collaborative method to alleviate their drawbacks. Finally, we introduce a novel filtering criterion named Distribution Consistency, which can effectively filter out outliers with poor probability distribution, such as uniform distribution, to further enhance the reconstruction quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Peng, R., Wang, R., Wang, Z., Lai, Y., Wang, R.: Rethinking depth estimation for multi-view stereo: a unified representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8645–8654 (2022)
Bae, G., Budvytis, I., Cipolla, R.: Multi-view depth estimation by fusing single-view depth probability with multi-view geometry. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2842–2851 (2022)
Wang, X., et al.: MVSTER: epipolar transformer for efficient multi-view stereo. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, pp. 573–591. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_33
Zhang, C., Meng, G., Bing, S., Xiang, S., Pan, C.: Monocular contextual constraint for stereo matching with adaptive weights assignment. Image Vis. Comput. 121, 104424 (2022)
Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: Mvsnet: depth inference for unstructured multi-view stereo. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 767–783 (2018)
Yang, J., Mao, W., Alvarez, J.M., Liu, M.: Cost volume pyramid based depth inference for multi-view stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4877–4886 (2020)
Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., Tan, P.: Cascade cost volume for high-resolution multi-view stereo and stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2495–2504 (2020)
Zhang, Y., et al.: Adaptive unimodal cost volume filtering for deep stereo matching. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12926–12934 (2020)
Wei, Z., Zhu, Q., Min, C., Chen, Y., Wang, G.: Aa-rmvsnet: adaptive aggregation recurrent multi-view stereo network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6187–6196 (2021)
Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., Quan, L.: Recurrent mvsnet for high-resolution multi-view stereo depth inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5525–5534 (2019)
Yan, J., et al.: Dense hybrid recurrent multi-view stereo net with dynamic consistency checking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 674–689. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_39
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Knapitsch, A., Park, J., Zhou, Q.-Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)
Yao, Y., et al.: Blendedmvs: a large-scale dataset for generalized multi-view stereo networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1790–1799 (2020)
Yu, F., Pang, J., Wang, R.: Sub-pixel convolution and edge detection for multi-view stereo. In: 2022 IEEE 8th International Conference on Computer and Communications (ICCC), pp. 1864–1868. IEEE (2022)
Merrell, P., et al.: Real-time visibility-based fusion of depth maps. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)
Zhang, J., Yao, Y., Li, S., Luo, Z., Fang, T.: Visibility-aware multi-view stereo network. arXiv preprint arXiv:2008.07928 (2020)
Cheng, S., et al.: Deep stereo using adaptive thin volume representation with uncertainty awareness. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2524–2534 (2020)
Xu, Q., Tao, W.: Planar prior assisted patchmatch multi-view stereo. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12516–12523 (2020)
Luo, K., Guan, T., Ju, L., Wang, Y., Chen, Z., Luo, Y.: Attention-aware multi-view stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1590–1599 (2020)
Wang, F., Galliani, S., Vogel, C., Speciale, P., Pollefeys, M.: Patchmatchnet: learned multi-view patchmatch stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14194–14203 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yu, F., Sun, X. (2024). Multi-view Stereo by Fusing Monocular and a Combination of Depth Representation Methods. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_23
Download citation
DOI: https://doi.org/10.1007/978-981-99-8070-3_23
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8069-7
Online ISBN: 978-981-99-8070-3
eBook Packages: Computer ScienceComputer Science (R0)