Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-task Learning Network for Automatic Pancreatic Tumor Segmentation and Classification with Inter-Network Channel Feature Fusion

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

  • 920 Accesses

Abstract

Pancreatic cancer is a malignant tumor with a high mortality rate. Therefore, accurately identifying pancreatic cancer is of great significance for early diagnosis and treatment. Currently, several methods have been developed using network structures based on multi-task learning to address tumor recognition issues. One common approach is to use the encoding part of a segmentation network as shared features for both segmentation and classification tasks. However, due to the focus on detailed features in segmentation tasks and the requirement for more global features in classification tasks, the shared features may not provide more discriminatory feature representation for the classification task. To address above challenges, we propose a novel multi-task learning network that leverages the correlation between the segmentation and classification networks to enhance the performance of both tasks. Specifically, the classification task takes the tumor region images extracted from the segmentation network’s output as input, effectively capturing the shape and internal texture features of the tumor. Additionally, a feature fusion module is added between the networks to facilitate information exchange and fusion. We evaluated our model on 82 clinical CT image samples. Experimental results demonstrate that our proposed multi-task network achieves excellent performance with a Dice similarity coefficient (DSC) of 88.42% and a classification accuracy of 85.71%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abiwinanda, N., Hanif, M., Hesaputra, S.T., Handayani, A., Mengko, T.R.: Brain tumor classification using convolutional neural network. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S. (eds.) World Congress on Medical Physics and Biomedical Engineering 2018. IP, vol. 68/1, pp. 183–189. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-9035-6_33

    Chapter  Google Scholar 

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  7. Li, H., et al.: Differential diagnosis for pancreatic cysts in CT scans using densely-connected convolutional networks. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2095–2098. IEEE (2019)

    Google Scholar 

  8. Li, Z., Wang, Y., Yu, J.: Brain tumor segmentation using an adversarial network. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 123–132. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_11

    Chapter  Google Scholar 

  9. Liang, Y., et al.: Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks. Radiother. Oncol. 145, 193–200 (2020)

    Article  Google Scholar 

  10. Liu, K.L., et al.: Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation. Lancet Digital Health 2(6), e303–e313 (2020)

    Article  Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  12. Ma, H., et al.: Construction of a convolutional neural network classifier developed by computed tomography images for pancreatic cancer diagnosis. World J. Gastroenterol. 26(34), 5156 (2020)

    Article  Google Scholar 

  13. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  14. Oktay, O., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  15. Qiu, C., et al.: RTUNet: residual transformer UNet specifically for pancreas segmentation. Biomed. Signal Process. Control 79, 104173 (2023)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Song, L., Geoffrey, K., Kaijian, H.: Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation. Expert Syst. Appl. 145, 113131 (2020)

    Article  Google Scholar 

  19. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)

    Article  Google Scholar 

  20. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  21. Wang, P., Patel, V.M., Hacihaliloglu, I.: Simultaneous segmentation and classification of bone surfaces from ultrasound using a multi-feature guided CNN. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 134–142. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_16

    Chapter  Google Scholar 

  22. Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted Res-UNet for high-quality retina vessel segmentation. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 327–331. IEEE (2018)

    Google Scholar 

  23. Xuan, W., You, G.: Detection and diagnosis of pancreatic tumor using deep learning-based hierarchical convolutional neural network on the internet of medical things platform. Futur. Gener. Comput. Syst. 111, 132–142 (2020)

    Article  Google Scholar 

  24. Zhou, Y., et al.: Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images. Med. Image Anal. 70, 101918 (2021)

    Article  Google Scholar 

  25. Zhou, Y., et al.: Hyper-pairing network for multi-phase pancreatic ductal adenocarcinoma segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 155–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_18

    Chapter  Google Scholar 

  26. Zhu, Z., Lu, Y., Shen, W., Fishman, E.K., Yuille, A.L.: Segmentation for classification of screening pancreatic neuroendocrine tumors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3402–3408 (2021)

    Google Scholar 

  27. Zhu, Z., Xia, Y., Xie, L., Fishman, E.K., Yuille, A.L.: Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 3–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_1

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Radiology of First Hospital of Jilin University. This work was supported by the National Natural Science Foundation of China (62276116, 61976106); Six talent peaks project in Jiangsu Province (DZXX-122)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, K. et al. (2024). Multi-task Learning Network for Automatic Pancreatic Tumor Segmentation and Classification with Inter-Network Channel Feature Fusion. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics