Abstract
Pancreatic cancer is a malignant tumor with a high mortality rate. Therefore, accurately identifying pancreatic cancer is of great significance for early diagnosis and treatment. Currently, several methods have been developed using network structures based on multi-task learning to address tumor recognition issues. One common approach is to use the encoding part of a segmentation network as shared features for both segmentation and classification tasks. However, due to the focus on detailed features in segmentation tasks and the requirement for more global features in classification tasks, the shared features may not provide more discriminatory feature representation for the classification task. To address above challenges, we propose a novel multi-task learning network that leverages the correlation between the segmentation and classification networks to enhance the performance of both tasks. Specifically, the classification task takes the tumor region images extracted from the segmentation network’s output as input, effectively capturing the shape and internal texture features of the tumor. Additionally, a feature fusion module is added between the networks to facilitate information exchange and fusion. We evaluated our model on 82 clinical CT image samples. Experimental results demonstrate that our proposed multi-task network achieves excellent performance with a Dice similarity coefficient (DSC) of 88.42% and a classification accuracy of 85.71%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abiwinanda, N., Hanif, M., Hesaputra, S.T., Handayani, A., Mengko, T.R.: Brain tumor classification using convolutional neural network. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S. (eds.) World Congress on Medical Physics and Biomedical Engineering 2018. IP, vol. 68/1, pp. 183–189. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-9035-6_33
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Li, H., et al.: Differential diagnosis for pancreatic cysts in CT scans using densely-connected convolutional networks. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2095–2098. IEEE (2019)
Li, Z., Wang, Y., Yu, J.: Brain tumor segmentation using an adversarial network. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 123–132. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_11
Liang, Y., et al.: Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks. Radiother. Oncol. 145, 193–200 (2020)
Liu, K.L., et al.: Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation. Lancet Digital Health 2(6), e303–e313 (2020)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Ma, H., et al.: Construction of a convolutional neural network classifier developed by computed tomography images for pancreatic cancer diagnosis. World J. Gastroenterol. 26(34), 5156 (2020)
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Oktay, O., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)
Qiu, C., et al.: RTUNet: residual transformer UNet specifically for pancreas segmentation. Biomed. Signal Process. Control 79, 104173 (2023)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Song, L., Geoffrey, K., Kaijian, H.: Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation. Expert Syst. Appl. 145, 113131 (2020)
Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Wang, P., Patel, V.M., Hacihaliloglu, I.: Simultaneous segmentation and classification of bone surfaces from ultrasound using a multi-feature guided CNN. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 134–142. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_16
Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted Res-UNet for high-quality retina vessel segmentation. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 327–331. IEEE (2018)
Xuan, W., You, G.: Detection and diagnosis of pancreatic tumor using deep learning-based hierarchical convolutional neural network on the internet of medical things platform. Futur. Gener. Comput. Syst. 111, 132–142 (2020)
Zhou, Y., et al.: Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images. Med. Image Anal. 70, 101918 (2021)
Zhou, Y., et al.: Hyper-pairing network for multi-phase pancreatic ductal adenocarcinoma segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 155–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_18
Zhu, Z., Lu, Y., Shen, W., Fishman, E.K., Yuille, A.L.: Segmentation for classification of screening pancreatic neuroendocrine tumors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3402–3408 (2021)
Zhu, Z., Xia, Y., Xie, L., Fishman, E.K., Yuille, A.L.: Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 3–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_1
Acknowledgements
The authors would like to thank the Department of Radiology of First Hospital of Jilin University. This work was supported by the National Natural Science Foundation of China (62276116, 61976106); Six talent peaks project in Jiangsu Province (DZXX-122)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chen, K. et al. (2024). Multi-task Learning Network for Automatic Pancreatic Tumor Segmentation and Classification with Inter-Network Channel Feature Fusion. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_42
Download citation
DOI: https://doi.org/10.1007/978-981-99-8067-3_42
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8066-6
Online ISBN: 978-981-99-8067-3
eBook Packages: Computer ScienceComputer Science (R0)