Nothing Special   »   [go: up one dir, main page]

Skip to main content

Neighborhood Learning for Artificial Bee Colony Algorithm: A Mini-survey

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

  • 826 Accesses

Abstract

Artificial bee colony (ABC) algorithm is a representative paradigm of swarm intelligence optimization (SIO) algorithms, which has received much attention in the field of global optimization for its good performance yet simple structure. However, there still exists a drawback for ABC that it owns strong exploration but weak exploitation, resulting in slow convergence speed and low convergence accuracy. To solve this drawback, in recent years, the neighborhood learning mechanism has emerged as an effective method, becoming a hot research topic in the community of ABC. However, there has been no surveys on it, even a short one. Considering the appeal of the neighborhood learning mechanism, we are motivated to provide a mini-survey to highlight some key aspects about it, including 1) how to construct a neighborhood topology? 2) how to select the learning exemplar? and 3) what are the advantages and disadvantages? In this mini-survey, some related neighborhood-based ABC variants are reviewed to reveal the key aspects. Furthermore, some interesting future research directions are also given to encourage deeper related works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akay, B., Karaboga, D.: Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell. Manuf. 23(4), 1001–1014 (2012)

    Article  Google Scholar 

  2. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, vol. 996. Oxford University Press, Oxford (1996)

    Book  MATH  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biswas, S., Das, S., Kundu, S., Patra, G.R.: Utilizing time-linkage property in DOPs: an information sharing based artificial bee colony algorithm for tracking multiple optima in uncertain environments. Soft. Comput. 18(6), 1199–1212 (2014)

    Article  Google Scholar 

  5. Cai, Q., et al.: Enhancing artificial bee colony algorithm with dynamic best neighbor-guided search strategy. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2020)

    Google Scholar 

  6. Cui, L., Li, G., Lin, Q., Chen, J., Lu, N., Zhang, G.: Artificial Bee colony algorithm based on neighboring information learning. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 279–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46675-0_31

    Chapter  Google Scholar 

  7. Cui, L., et al.: A smart artificial bee colony algorithm with distance-fitness-based neighbor search and its application. Futur. Gener. Comput. Syst. 89, 478–493 (2018)

    Article  Google Scholar 

  8. Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applications. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-03423-1

    Book  MATH  Google Scholar 

  9. Dedeturk, B.K., Akay, B.: Spam filtering using a logistic regression model trained by an artificial bee colony algorithm. Appl. Soft Comput. 91, 106229 (2020)

    Article  Google Scholar 

  10. Dongli, Z., Xinping, G., Yinggan, T., Yong, T.: An artificial bee colony optimization algorithm based on multi-exchange neighborhood. In: Proceedings OT the Fourth International Conference on Computational and Information Sciences, pp. 211–214. IEEE (2012)

    Google Scholar 

  11. Gao, H., Fu, Z., Pun, C.M., Zhang, J., Kwong, S.: An efficient artificial bee colony algorithm with an improved linkage identification method. IEEE Trans. Cybern. 52, 4400–4414 (2020)

    Article  Google Scholar 

  12. Gao, W., Chan, F.T., Huang, L., Liu, S.: Bare bones artificial bee colony algorithm with parameter adaptation and fitness-based neighborhood. Inf. Sci. 316, 180–200 (2015)

    Article  Google Scholar 

  13. Gao, W., Liu, S.: A modified artificial bee colony algorithm. Comput. Oper. Res. 39(3), 687–697 (2012)

    Article  MATH  Google Scholar 

  14. Jadon, S.S., Bansal, J.C., Tiwari, R., Sharma, H.: Artificial bee colony algorithm with global and local neighborhoods. Int. J. Syst. Assur. Eng. Manage. 9(3), 589–601 (2018)

    Article  Google Scholar 

  15. Ji, J., Song, S., Tang, C., Gao, S., Tang, Z., Todo, Y.: An artificial bee colony algorithm search guided by scale-free networks. Inf. Sci. 473, 142–165 (2019)

    Article  Google Scholar 

  16. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  17. Karaboga, D., Gorkemli, B.: A quick artificial bee colony (QABC) algorithm and its performance on optimization problems. Appl. Soft Comput. 23, 227–238 (2014)

    Article  Google Scholar 

  18. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)

    Article  Google Scholar 

  19. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multimedia Tools Appl. 80(5), 8091–8126 (2021)

    Article  Google Scholar 

  20. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  21. Kiran, M.S., et al.: Improved artificial bee colony algorithm for continuous optimization problems. J. Comput. Commun. 2(04), 108 (2014)

    Article  Google Scholar 

  22. Kong, D., Chang, T., Dai, W., Wang, Q., Sun, H.: An improved artificial bee colony algorithm based on elite group guidance and combined breadth-depth search strategy. Inf. Sci. 442, 54–71 (2018)

    Article  MathSciNet  Google Scholar 

  23. Krejca, M.S., Witt, C.: Theory of estimation-of-distribution algorithms. In: Theory of Evolutionary Computation. NCS, pp. 405–442. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_9

    Chapter  Google Scholar 

  24. Liao, Z., Gong, W., Wang, L.: A hybrid swarm intelligence with improved ring topology for nonlinear equations. Sci. Sinica Informationis 50(3), 396–407 (2020)

    Article  Google Scholar 

  25. Mirjalili, S.: Genetic algorithm. In: Evolutionary Algorithms and Neural Networks. SCI, vol. 780, pp. 43–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93025-1_4

    Chapter  MATH  Google Scholar 

  26. Pant, M., Zaheer, H., Garcia-Hernandez, L., Abraham, A., et al.: Differential evolution: a review of more than two decades of research. Eng. Appl. Artif. Intell. 90, 103479 (2020)

    Article  Google Scholar 

  27. Peng, H., Deng, C., Wu, Z.: Best neighbor-guided artificial bee colony algorithm for continuous optimization problems. Soft. Comput. 23(18), 8723–8740 (2019)

    Article  Google Scholar 

  28. Peng, H., Zhu, W., Deng, C., Wu, Z.: Enhancing firefly algorithm with courtship learning. Inf. Sci. 543, 18–42 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Piotrowski, A.P., Napiorkowski, J.J., Piotrowska, A.E.: Population size in particle swarm optimization. Swarm Evol. Comput. 58, 100718 (2020)

    Article  Google Scholar 

  30. Price, K.V.: Differential evolution. In: Zelinka, I., Snášel, V., Abraham, A. (eds.) Handbook of Optimization. Intelligent Systems Reference Library, vol. 38, pp. 187–214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30504-7_8

    Chapter  Google Scholar 

  31. Rajasekhar, A., Abraham, A., Pant, M.: Levy mutated artificial bee colony algorithm for global optimization. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 655–662. IEEE (2011)

    Google Scholar 

  32. Slowik, A., Kwasnicka, H.: Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 32, 12363–12379 (2020)

    Article  Google Scholar 

  33. Snyman, J.A.: Practical Mathematical Optimization. Springer, New York (2005). https://doi.org/10.1007/b105200

  34. Sun, C., Zhou, X., Wang, M.: A multi-strategy artificial bee colony algorithm with neighborhood search. In: Tan, Y., Shi, Y., Niu, B. (eds.) ICSI 2019. LNCS, vol. 11655, pp. 310–319. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26369-0_29

    Chapter  Google Scholar 

  35. Wang, H., Wang, W., Xiao, S., Cui, Z., Xu, M., Zhou, X.: Improving artificial bee colony algorithm using a new neighborhood selection mechanism. Inf. Sci. 527, 227–240 (2020)

    Google Scholar 

  36. Xiang, W.L., Li, Y.Z., Meng, X.L., Zhang, C.M., An, M.Q.: A grey artificial bee colony algorithm. Appl. Soft Comput. 60, 1–17 (2017)

    Article  Google Scholar 

  37. Xiao, S., Wang, H., Wang, W., Huang, Z., Zhou, X., Xu, M.: Artificial bee colony algorithm based on adaptive neighborhood search and gaussian perturbation. Appl. Soft Comput. 100, 106955 (2021)

    Article  Google Scholar 

  38. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  39. Yu, X., Gen, M.: Introduction to Evolutionary Algorithms. Springer, London (2010). https://doi.org/10.1007/978-1-84996-129-5

    Book  MATH  Google Scholar 

  40. Zhang, M., Tian, N., Palade, V., Ji, Z., Wang, Y.: Cellular artificial bee colony algorithm with gaussian distribution. Inf. Sci. 462, 374–401 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, Q., Zhou, A., Jin, Y.: RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans. Evol. Comput. 12(1), 41–63 (2008)

    Article  Google Scholar 

  42. Zhong, F., Li, H., Zhong, S.: An improved artificial bee colony algorithm with modified-neighborhood-based update operator and independent-inheriting-search strategy for global optimization. Eng. Appl. Artif. Intell. 58, 134–156 (2017)

    Article  Google Scholar 

  43. Zhou, J., et al.: An individual dependent multi-colony artificial bee colony algorithm. Inf. Sci. 485, 114–140 (2019)

    Article  Google Scholar 

  44. Zhou, X., Wang, H., Wang, M., Wan, J.: Enhancing the modified artificial bee colony algorithm with neighborhood search. Soft. Comput. 21(10), 2733–2743 (2017)

    Article  Google Scholar 

  45. Zhou, X., Wu, Y., Zhong, M., Wang, M.: Artificial bee colony algorithm based on multiple neighborhood topologies. Appl. Soft Comput. 111, 107697 (2021)

    Article  Google Scholar 

  46. Zhou, X., Wu, Z., Wang, H., Rahnamayan, S.: Gaussian bare-bones artificial bee colony algorithm. Soft. Comput. 20(3), 907–924 (2016)

    Article  Google Scholar 

  47. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217(7), 3166–3173 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Zou, W., Zhu, Y., Chen, H., Shen, H.: Artificial bee colony algorithm based on von Neumann topology structure. In: Proceeding of the IEEE International Conference on Computer and Electrical Engineering. IEEE (2012)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 61966019 and 62366022), the Jiangxi Provincial Natural Science Foundation (No. 20232BAB202048), and the Science and Technology Plan Projects of Jiangxi Provincial Education Department (No. GJJ210324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, X., Tan, G., Wu, Y., Wu, S. (2024). Neighborhood Learning for Artificial Bee Colony Algorithm: A Mini-survey. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics