Abstract
A pelvic-assisted walking training robot is proposed for individuals with walking difficulties, such as hemiplegic patients and the elderly. Firstly, an innovative overall structure of the pelvic-assisted walking training robot with a symmetric layout is designed based on the requirements of rehabilitation robotics and clinical rehabilitation training. Secondly, according to the analysis of human gait, the gait cycle is divided into Initial Step, Continuous Cycle Step and Terminal Step, and the motion planning of these three parts is carried out reasonably. Finally, a semi-physical simulation analysis is conducted to validate the influence of different gait cycle durations on the swing of the lower limb assistive linkages, ensuring the fulfillment of walking rehabilitation training requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Lou, Y.T., Yang, J.J., Ma, Y.F., et al.: Effects of different acupuncture methods combined with routine rehabilitation on gait of stroke patients. World Journal of Clinical Cases 8(24), 14 (2020)
Jiang, G.: Early rehabilitation nursing for stroke patients with hemiplegia in neurology department. J. Clini. Nurs. Res. 5(6), 5 (2021)
Tao, R., Ocampo, R., Fong, J., et al.: Modeling and emulating a physiotherapist's role in robot-assisted rehabilitation. Adv. Intell. Sys. 2(7), 1900181 (2020)
Zou, Y.P., Zhang, A.D., Zhang, Q., et al.: Design and experimental research of 3-RRS parallel ankle rehabilitation robot. Micromachines 13, 950 (2022)
Shi, D., Zhang, W., Zhang, W., et al.: A review on lower limb rehabilitation exoskeleton robots. Chinese J. Mecha. Eng. 32(1), 1–11 (2019)
Lu, J., Guo, S., Zhou, M.: Weight loss system of lower limb rehabilitation robot based on force/position control. Metrology & Measurement Technique (2019)
Cherni, Y., Hajizadeh, M., Maso, F.D., et al.: Effects of body weight support and guidance force settings on muscle synergy during Lokomat walking. European J. Appl. Physiol. 1–14 (2021)
Zoss, A.B., Kazerooni, H., Chu, A.: Hybrid control of the berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 11(2), 128–138 (2006)
Tanaka, N., Saitou, H., Takao, T., et al.: Effects of gait rehabilitation with a footpad-type locomotion interface in patients with chronic post-stroke hemiparesis: a pilot study. Clin. Rehabil. 26(8), 686 (2012)
Andrenelli, E., Capecci, M., Biagio, L.D., et al.: Improving gait function and sensorimotor brain plasticity through robotic gait training with G-EO system in Parkinson’s disease. Ann. Phys. Rehabil. Med. 61, e79–e80 (2018)
Ma, Y.M., Xia, M., Qin, T., et al.: Design and motion planning of a pelvic-assisted walking training robot. In: Proceedings of 15th International Conference of Intelligent Robotics and Applications, ICIRA2022, pp. 694–704. Harbin, China (August 1–3, 2022)
Acknowledgments
This work was supported by Scientific Research Project of Education Department of Hubei Province under Grant No. D20222603, Science and Technology Innovation Team of Hubei University of Arts and Science under Grant 2022pytd01, Graduate Innovation Project of Hubei University of Arts and Science under Grant YCX202305.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, Q., Wang, J., Qiu, J., Yang, M., Qin, T. (2023). Motion Planning for Pelvis-Assisted Walking Training Robot. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14274. Springer, Singapore. https://doi.org/10.1007/978-981-99-6501-4_5
Download citation
DOI: https://doi.org/10.1007/978-981-99-6501-4_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-6500-7
Online ISBN: 978-981-99-6501-4
eBook Packages: Computer ScienceComputer Science (R0)