Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modeling of the Electromagnetic Launching Process for a Tethered-Net Capturing System

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Abstract

In modern high-altitude rescuing work, the traditional rescuing methods have problems of low safety and reliability. To solve this problem, a tethered-net rescuing method based on electromagnetic launching is proposed in this paper. The method launches four ferromagnetic mass blocks through the reluctance coil launchers and uses the kinetic energy of the mass blocks to drive the tethered net to fly out. Finally, the object will be trapped and the rescuing task will then be completed as long as the tethered net can be restored along with the trapped object. On this basis, the structural design of the reluctance coil launching unit is presented with its mathematical model established. The correctness of the model is verified by experiments. The exit velocity of the projectile is measured and agreed with the numerical results. The current investigation provides an important theoretical basis for the tethered-net capturing to perform high-altitude rescues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faraj, R., Popławski, B., Gabryel, D., Kowalski, T., Hinc, K.: Adaptive airbag system for increased evacuation safety. Eng. Struct. 270, 114853 (2022)

    Article  Google Scholar 

  2. Yiming, L., Ziming, X., Xi, C., Sidong, Z., Derong, W.: Simulation and experimental study of the traction and deployment of an interceptive space net wih anti-UAV. Acta Armamentarii 43(9), 2048 (2022)

    Google Scholar 

  3. Yu, D., Judasz, A., Zheng, M., Botta, E.M.: Design and testing of a net-launch device for drone capture. In: AIAA SCITECH 2022 Forum, p. 0273 (2022)

    Google Scholar 

  4. Carlson, E., et al.: Final design of a space debris removal system. Tech. Rep. 92, 25832 (1990)

    Google Scholar 

  5. Sinn, T.: Lessons learned from REXUS12’S Suaineadh experiment: spinning deployment of a space web in milli gravity. In: 21st ESA Symposium on European Rocket and Balloon Programmes and Related Research (2013)

    Google Scholar 

  6. Ma, W., Junyong, L.: Thinking and study of electromagnetic launch technology. IEEE Trans. Plasma Sci. 45(7), 1071–1077 (2017)

    Article  Google Scholar 

  7. Ma, W., Junyong, L., Liu, Y.: Research progress of electromagnetic launch technology. IEEE Trans. Plasma Sci. 47(5), 2197–2205 (2019)

    Article  Google Scholar 

  8. Fair, H.D.: Guest editorial the past, present, and future of electromagnetic launch technology and the IEEE international EML symposia. IEEE Trans. Plasma Sci. 43(5), 1112–1116 (2015)

    Article  Google Scholar 

  9. McNab, I.R.: Launch to space with an electromagnetic railgun. IEEE Trans. Magn. 39(1), 295–304 (2003)

    Article  Google Scholar 

  10. Kaye, R.J.: Operational requirements and issues for coilgun EM launchers. In: 2004 12th Symposium on Electromagnetic Launch Technology, pp. 59–64. IEEE (2004)

    Google Scholar 

  11. Brown, M.R., et al.: Energetic particles from three-dimensional magnetic reconnection events in the Swarthmore Spheromak experiment. Phys. Plasmas 9(5), 2077–2084 (2002)

    Article  Google Scholar 

  12. Nechitailo, N.V., Lewis, K.B.: Critical velocity for rails in hypervelocity launchers. Int. J. Impact Eng 33(1–12), 485–495 (2006)

    Article  Google Scholar 

  13. Zizhou, S., et al.: Investigation of armature capture effect on synchronous induction coilgun. IEEE Trans. Plasma Sci. 43(5), 1215–1219 (2015)

    Article  Google Scholar 

  14. Slade, G.W.: A simple unified physical model for a reluctance accelerator. IEEE Trans. Magn. 41(11), 4270–4276 (2005)

    Article  Google Scholar 

  15. Orbach, Y., Oren, M., Einat, M.: 75 m/s simulation and experiment of two-stage reluctance coilgun. J. Mech. Sci. Technol. 36(3), 1123–1130 (2022). https://doi.org/10.1007/s12206-022-0205-8

    Article  Google Scholar 

  16. Cowan, M., Cnare, E., Duggin, B., Kaye, R., Tucker, T.: The reconnection gun. IEEE Trans. Magn. 22(6), 1429–1434 (1986)

    Article  Google Scholar 

  17. Bresie, D.A., Andrews, J.A.: Design of a reluctance accelerator. IEEE Trans. Magn. 27(1), 623–627 (1991)

    Article  Google Scholar 

  18. Hou, Y., Liu, Z., Ouyang, J-M., Yang, D.: Parameter settings of the projectile of the coil electromagnetic launcher. In: 2012 16th International Symposium on Electromagnetic Launch Technology, pp. 1–4. IEEE (2012)

    Google Scholar 

  19. Zhu, B., Junyong, L., Wang, J., Xiong, S.: A compulsator driven reluctance coilgun-type electromagnetic launcher. IEEE Trans. Plasma Sci. 45(9), 2511–2518 (2017)

    Article  Google Scholar 

  20. Mengkun, L., Zhang, J., Yi, X., Zhuang, Z.: Advanced mathematical calculation model of single-stage RCG. IEEE Trans. Plasma Sci. 50(4), 1026–1031 (2022)

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to thank the financial support from the Zhejiang Provincial Natural Science Foundation of China under contract number LY22E050013, the China Postdoctoral Science Foundation funded project under contract number 2021M690545, and the National Natural Science Foundation of China (NSFC) under contract number 51805124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoying Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Z. et al. (2023). Modeling of the Electromagnetic Launching Process for a Tethered-Net Capturing System. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14273. Springer, Singapore. https://doi.org/10.1007/978-981-99-6498-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6498-7_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6497-0

  • Online ISBN: 978-981-99-6498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics