Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rock-Climbing Fish Inspired Skeleton-Embedded Rigid-Flexible Coupling Suction Disc Design for Adhesion Enhancement

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Abstract

Underwater high-performance biological adhesion systems have attracted increasing research interest to inspire engineered adhesion systems. Switchable underwater adhesion systems typically employ suction adhesion. However, achieving low pre-pressure negative pressure adhesion is still a challenge. An inspiring nature mode is provided by the rock-climbing fish, which needs little preload and can resist a pull-off force of 1000 times its own body weight. The pectoral and abdominal fins of rock-climbing fish have evolved to almost a flat suction cup. Through micro CT, we found that a unique skeletal network is embedded in the suction cup. This unique structure increases the stiffness of the suction cup and enhances its adhesion performance. Through numerical simulation, it was revealed that this rigid, flexible coupling structure enhances the ability of the suction cup to resist lateral pressure and increases the energy dissipation of the edge detachment of the suction cup. This work can shed light on the design of novel underwater adhesion systems and inspire underwater adhesion crawling robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chuang, Y.C., Chang, H.K., Liu, G.L., Chen, P.Y.: Climbing upstream: multi-scale structural characterization and underwater adhesion of the Pulin river loach (Sinogastromyzon puliensis). J. Mech. Behav. Biomed. 73, 76–85 (2017)

    Article  Google Scholar 

  2. De Meyer, J., Geerinckx, T.: Using the whole body as a sucker: combining respiration and feeding with an attached lifestyle in hill stream loaches (Balitoridae, Cypriniformes): respiration and feeding mechanism in hill stream loaches. J. Morphol. 275(9), 1066–1079 (2014)

    Article  Google Scholar 

  3. Wang, J., Ji, C., Wang, W., Zou, J., Yang, H., Pan, M.: An adhesive locomotion model for the rock-climbing fish. Beaufortia kweichowensis. Sci. Rep. 9(1), 16571 (2019)

    Article  Google Scholar 

  4. Zou, J., Wang, J., Ji, C.: The adhesive system and anisotropic shear force of guizhou gastromyzontidae. Sci. Rep. 6(1), 37221 (2016)

    Article  Google Scholar 

  5. Wang, J.R., Yong-Xin, X.I., Chen, J.I., Zou, J.: A biomimetic robot crawling bidirectionally with load inspired by rock-climbing fish. J. Zhejiang UNIV-SC A. 23, 14–26 (2022)

    Article  Google Scholar 

  6. Baik, S., Kim, D.W., Park, Y., Lee, T.-J., Ho Bhang, S., Pang, C.: A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546(7658), 396–400 (2017)

    Article  Google Scholar 

  7. Wang, Y., et al.: A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Sci. Robot. 2(10), eaan8072 (2017)

    Google Scholar 

  8. Lee, H., Um, D.-S., Lee, Y., Lim, S., Kim, H., Ko, H.: Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv. Mater. 28(34), 7457–7465 (2016)

    Article  Google Scholar 

  9. Wainwright, D.K., Kleinteich, T., Kleinteich, A., Gorb, S.N., Summers, A.P.: Stick tight: suction adhesion on irregular surfaces in the northern clingfish. Biol. Lett. 9(3), 20130234 (2013)

    Article  Google Scholar 

  10. Ditsche, P., Summers, A.P.: Aquatic versus terrestrial attachment: Water makes a difference. Beilstein J. Nanotechnol. 5, 2424–2439 (2014)

    Article  Google Scholar 

  11. Kier, W.M.: The structure and adhesive mechanism of octopus suckers. Integr. Comp. Biol. 42(6), 1146–1153 (2002)

    Article  Google Scholar 

  12. Tramacere, F., Beccai, L., Kuba, M., Gozzi, A., Bifone, A., Mazzolai, B.: The morphology and adhesion mechanism of octopus vulgaris suckers. PLoS One 8(6), e65074 (2013)

    Article  Google Scholar 

  13. Su, S., et al.: Vertical fibrous morphology and structure-function relationship in natural and biomimetic suction-based adhesion discs. Matter 2(5), 1207–1221 (2020)

    Article  Google Scholar 

  14. Xue, L., et al.: Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano 11(10), 9711–9719 (2017)

    Article  Google Scholar 

  15. Dodou, D., Breedveld, P., de Winter, J.C.F., Dankelman, J., van Leeuwen, J.L.: Mechanisms of temporary adhesion in benthic animals. Biol. Rev. 86(1), 15–32 (2011)

    Article  Google Scholar 

  16. Majumder, A., Ghatak, A., Sharma, A.: Microfluidic adhesion induced by subsurface microstructures. Science 318(5848), 258–261 (2007)

    Article  Google Scholar 

  17. Peng, Z., Chen, S.: Effect of bending stiffness on the peeling behavior of an elastic thin film on a rigid substrate. Phys. Rev. E. 91(4), 042401 (2015)

    Article  MathSciNet  Google Scholar 

  18. Britz, R., Johnson, G.D.: Ontogeny and homology of the skeletal elements that form the sucking disc of remoras (Teleostei, Echeneoidei, Echeneidae). J. Morphol. 273(12), 1353–1366 (2012)

    Article  Google Scholar 

  19. Meyers, M.A., Chen, P.-Y., Lin, A.Y.-M., Seki, Y.: Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53(1), 1–206 (2008)

    Article  Google Scholar 

  20. Sander, I.L., Dvorak, N., Stebbins, J.A., Carr, A.J., Mouthuy, P.-A.: Advanced robotics to address the translational gap in tendon engineering. Cyborg Bionic Syst. 2022, 9842169 (2022)

    Article  Google Scholar 

  21. Perez-Guagnelli, E., Jones, J., D Damian, D.: Hyperelastic membrane actuators: analysis of toroidal and helical multifunctional configurations. Cyborg Bionic Syst. 2022, 9786864 (2022)

    Google Scholar 

  22. Gu, Z., Li, S., Zhang, F., Wang, S.: Understanding surface adhesion in nature: a peeling model. Adv. Sci. 3(7), 1500327 (2016)

    Article  Google Scholar 

  23. Chen, Y., Meng, J., Gu, Z., Wan, X., Jiang, L., Wang, S.: Bioinspired multiscale wet adhesive surfaces: structures and controlled adhesion. Adv. Funct. Mater. 30(5), 1905287 (2020)

    Article  Google Scholar 

  24. Niederegger, S., Gorb, S., Jiao, Y.K.: Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae). J. Comp. Physiol. A -Neuroethol. Sens. Neural Behav. Physiol. 187(12), 961–970 (2002)

    Google Scholar 

  25. Pesika, N.S., et al.: Peel-zone model of tape peeling based on the gecko adhesive system. J. Adhes. 83(4), 383–401 (2007)

    Article  Google Scholar 

  26. Hanna, B.W.J.P.: Adhesion and detachment of the toe pads of tree frogs. J. Exp. Biol. 155, 103–125 (1991)

    Google Scholar 

  27. Skopic, B.H., Schniepp, H.C.: Peeling in biological and bioinspired adhesive systems. JOM 72(4), 1509–1522 (2020). https://doi.org/10.1007/s11837-020-04037-3

    Article  Google Scholar 

  28. Federle, W., Brainerd, E.L., McMahon, T.A., Holldobler, B.: Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc. Natl. Acad. Sci. U.S.A. 98(11), 6215–6220 (2001)

    Article  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China [2020YFB1313100]; National Natural Science Foundation of China [62003338]; National Natural Science Foundation of China [61925307]; National Defense Science and Technology Innovation Key deployment project of Chinese Academy of Sciences [JCPYJJ-22020]; Youth Innovation Promotion Association, Chinese Academy of Science [2023210].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, W. et al. (2023). Rock-Climbing Fish Inspired Skeleton-Embedded Rigid-Flexible Coupling Suction Disc Design for Adhesion Enhancement. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14269. Springer, Singapore. https://doi.org/10.1007/978-981-99-6489-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6489-5_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6488-8

  • Online ISBN: 978-981-99-6489-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics