Nothing Special   »   [go: up one dir, main page]

Skip to main content

AdVLO: Region Selection via Attention-Driven for Visual LiDAR Odometry

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13995))

Included in the following conference series:

  • 486 Accesses

Abstract

Simultaneous Localization and Mapping (SLAM) aims to estimate the position and reconstruct the map of mobile robotics. Odometry is an essential component that tries to calculate the translations and rotations between frames of the sensors attached to the vehicle on the fly. Visual-LiDAR Odometry (VLO) is a prominent approach that has advantages in the sensor costs of cameras and robustness to environmental changes of LiDAR sensors. In general, one of the critical tasks in Odometry is selecting the important features between frames. In this paper, we proposed an end-to-end visual LiDAR odometry method named AdVLO that selects the important regions between frames via an attention-driven mechanism. A mask of essential regions of the input frame is generated via the attention mechanism. We then fuse the attention mask with the corresponding frame to maintain the essential regions. Instead of concatenating like previous works in VLO, we fuse the visual features and LiDAR using the Guided attention technique. The translation and rotation of the camera are calculated via the sequential computation of the LSTM. Experimental results on the KITTI dataset show that our proposed method achieves promising results compared to other odometry methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, Y., Shi, J., Gu, D., Liu, Q.: Visual-lidar slam based on unsupervised multi-channel deep neural networks. Springer Cogn. Comput. 14, 1496–1508 (2022)

    Article  Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  3. Cho, Y., Kim, G., Kim, A.: DeepLO: geometry-aware deep lidar odometry. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2145–2152 (2022)

    Google Scholar 

  4. Davison, A.J., Reid, I., Molton, N., Stasse, O.: MonoSLAM: real-time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 1052–1067 (2007). https://doi.org/10.1109/tpami.2007.1049

    Article  Google Scholar 

  5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  6. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32, 1231–1237 (2013). https://doi.org/10.1177/0278364913491297

    Article  Google Scholar 

  7. Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3d reconstruction in real-time. In: IEEE Intelligent Vehicles Symposium (IV), pp. 963–968 (2011)

    Google Scholar 

  8. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: International Conference on Computer Vision (ICCV), pp. 2938–2946 (2015)

    Google Scholar 

  9. Li, Q., Chen, S., Wang, C., Li, X., Wen, C., Cheng, M., Li, J.: Lo-net: deep real-time lidar odometry. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019). https://doi.org/10.1109/cvpr.2019.00867

  10. Li, R., Gu, D., Liu, Q., Long, Z., Hu, H.: Semantic scene mapping with spatio-temporal deep neural network for robotic applications. Cogn. Comput. (2018). https://doi.org/10.1007/s12559-017-9526-9

    Article  Google Scholar 

  11. Li, R., Wang, S., Gu, D.: DeepSLAM: a robust monocular slam system with unsupervised deep learning. IEEE Trans. Industr. Electron. (2020). https://doi.org/10.1109/tie.2020.2982096

    Article  Google Scholar 

  12. Li, R., Wang, S., Long, Z., Gu, D.: UnDeepVO: monocular visual odometry through unsupervised deep learning. ArXiv e-prints (2017). https://doi.org/10.48550/ARXIV.1709.06841, arXiv:1709.06841

  13. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999). https://doi.org/10.1109/ICCV.1999.790410

  14. Mur-Artal, R., Tardós, J.D.: Orb-SLAM2: an open-source slam system for monocular, stereo and RGB-D cameras. IEEE Trans. Rob. (2017). https://doi.org/10.1109/tro.2017.2705103

    Article  Google Scholar 

  15. Nguyen, X.D., You, B.J., Oh, S.R.: A simple framework for indoor monocular slam. Int. J. Control. Autom. Syst. 6, 62–75 (2008)

    Google Scholar 

  16. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems (NIPS), vol. 32 (2019). https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

  17. Qi, C., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3d classification and segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017)

    Google Scholar 

  18. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: International Conference on Computer Vision, pp. 2564–2571 (2011). https://doi.org/10.1109/ICCV.2011.6126544

  19. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001). https://doi.org/10.1109/IM.2001.924423

  20. Shi, J., Tomasi: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994). https://doi.org/10.1109/CVPR.1994.323794

  21. Wang, S., Clark, R., Wen, H., Trigoni, N.: DeepVO: towards end-to-end visual odometry with deep recurrent convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA) (2017). https://doi.org/10.1109/icra.2017.7989236

  22. Weixin, L., Lu, W., Zhou, Y., Wan, G., Hou, S., Song, S.: L3-net: towards learning based lidar localization for autonomous driving. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6389–6398 (2019). https://doi.org/10.1109/cvpr.2019.00655

  23. Xu, C., Feng, Z., Chen, Y., Wang, M., Wei, T.: FeatNet: large-scale fraud device detection by network representation learning with rich features. In: Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security, pp. 57–63 (2018)

    Google Scholar 

  24. Yan, M., Wang, J., Li, J., Zhang, C.: Loose coupling visual-lidar odometry by combining VISO2 and LOAM. In: 36th Chinese Control Conference (CCC), pp. 6841–6846 (2017)

    Google Scholar 

  25. Yin, D., et al.: CAE-LO: lidar odometry leveraging fully unsupervised convolutional auto-encoder for interest point detection and feature description. arXiv: Computer Vision and Pattern Recognition (2020)

  26. Zhan, H., Garg, R., Weerasekera, C.S., Li, K., Agarwal, H., Reid, I.: Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 340–349 (2018)

    Google Scholar 

  27. Zhang, J., Singh, S.: LOAM: lidar odometry and mapping in real-time. In: Proceedings of Robotics: Science and Systems (RSS 2014) (2014)

    Google Scholar 

  28. Zhang, J., Singh, S.: Visual-lidar odometry and mapping: low-drift, robust, and fast. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2174–2181 (2015)

    Google Scholar 

  29. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6612–6619 (2017). https://doi.org/10.1109/CVPR.2017.700

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lam, H., Pho, K., Yoshitaka, A. (2023). AdVLO: Region Selection via Attention-Driven for Visual LiDAR Odometry. In: Nguyen, N.T., et al. Intelligent Information and Database Systems. ACIIDS 2023. Lecture Notes in Computer Science(), vol 13995. Springer, Singapore. https://doi.org/10.1007/978-981-99-5834-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5834-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5833-7

  • Online ISBN: 978-981-99-5834-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics