Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advances in Privacy Preservation Technologies

  • Chapter
  • First Online:
Privacy Computing

Abstract

The rapid development of information technology and the continuous evolution of new business paradigms and personalized services have promoted frequent cross-border, cross-system, and cross-ecosystem interactions of users’ data, increasing the retention of privacy information in different information systems and expanding the risk of privacy information leakage. Subsequently, privacy preservation has received more and more attention from the society, and scholars have also carried out extensive academic research to develop privacy preservation technologies for different scenarios. This chapter will sort out and summarize the research advances of privacy preservation technologies from the perspective of technology evolution, with the main focus on privacy protection technology, privacy desensitization technology, privacy preservation confrontation analysis, etc. This chapter shows the necessity of proposing privacy computing during the evolution of privacy preservation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found Secure Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  2. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: EUROCRYPT’99, pp. 223–238. Springer, Berlin (1999)

    Google Scholar 

  3. Lu, R.X., Liang, X.H., Li, X.D., et al.: EPPA: an efficient and privacy-preserving aggregation scheme for secure smart grid communications. IEEE Trans Parallel Distrib Syst. 23(9), 1621–1631 (2012)

    Article  Google Scholar 

  4. Samanthula, B.K., Elmehdwi, Y., Jiang, W.: K-nearest neighbor classification over semantically secure encrypted relational data. IEEE Trans Knowl Data Eng. 27(5), 1261–1273 (2015)

    Article  Google Scholar 

  5. Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford University, Stanford (2009)

    Google Scholar 

  6. Dijk, M.V., Gentry, C., Halevi, S., et al.: Fully homomorphic encryption over the integers. In: Annual International Conference on the theory and applications of cryptographic techniques, pp. 24–43. Springer, Berlin (2010)

    Google Scholar 

  7. Bost, R., Popa, R.A., Tu, S., et al.: Machine learning classification over encrypted data. In: Network and distributed system security symposium, pp. 4324–4325. Cryptology ePrint Archive (2015)

    Google Scholar 

  8. Rao, V., Rao, P.: Improving vocal melody extraction in the presence of pitched accompaniment in polyphonic music. IEEE Trans. Audio Speech Lang. Process. 18(8), 2145–2154 (2010)

    Article  Google Scholar 

  9. Sofianos, S., Ariyaeeinia, A., Polfreman, P.: Towards effective singing voice extraction from stereophonic recordings. In: Processing of IEEE International Conference on acoustics speech and signal processing, pp. 233–236. IEEE Press, Piscataway (2010)

    Google Scholar 

  10. Damgard, I., Ishai, Y., Kroigaard, M., et al.: Scalable multiparty computation with nearly optimal work and resilience. In: Annual International Cryptology Conference, pp. 241–261. Springer, Berlin (2008)

    Google Scholar 

  11. Pettai, M., Laud, P.: Automatic proofs of privacy of secure multi-party computation protocols against active adversaries. In: 2015 IEEE 28th Computer Security Foundations Symposium, pp. 75–89. IEEE Press, Piscataway (2015)

    Chapter  Google Scholar 

  12. Shukla, S., Sadashivappa, G.: Secure multi-party computation protocol using asymmetric encryption. In: International Conference on computing for sustainable global development, pp. 780–785. IEEE Press, Piscataway (2014)

    Google Scholar 

  13. Ting, W., Wenjun, L.: Applications of secure multi-party computation in space geometry problems. Comput Appl Syst. 24(1), 156–160 (2015)

    Google Scholar 

  14. Maohua, S.: Research on Secure Multi-Party Computation and its Application [D]. Beijing University of Posts and Telecommunications, Beijing (2013). http://read.nlc.cn/allSearch/searchDetail?searchType=&showType=1&indexName=data_408&fid=006873234

  15. Henecka, W., Sadeghi, A.R., Schneider, T., et al.: TASTY: tool for automating secure two-party computations. In: Proceedings of the 17th ACM Conference on computer and communications security, pp. 451–462. ACM Press, New York (2010)

    Chapter  Google Scholar 

  16. Xue, K.P., Xue, Y.J., Hong, J.N., et al.: RAAC: robust and auditable access control with multiple attribute authorities for public cloud storage. IEEE Trans. Inf. Forensics Secur. 12(4), 953–967 (2017)

    Article  Google Scholar 

  17. Jing, W., Chuanhe, H., Jinhai, W.: An access control mechanism with dynamic privilege for cloud storage. J Comput Res Develop. 53(4), 904–920 (2016)

    Google Scholar 

  18. Zhitao, G., Tingting, Y., Ruzhi, X., et al.: Multi-authority attribute-based encryption access control model for cloud storage. J. Commun. 36(6), 116–126 (2015)

    Google Scholar 

  19. Saxena, N., Choi, B.J., Lu, R.X.: Authentication and authorization scheme for various user roles and devices in smart grid. IEEE Trans. Inf. Forensics Secur. 11(5), 907–921 (2016)

    Article  Google Scholar 

  20. Zhang, Y., Chen, J., Du, R., et al.: FEACS: a flexible and efficient access control scheme for cloud computing. In: Proceedings of IEEE International Conference on trust, security and privacy in computing and communications, pp. 310–319. IEEE Press, Piscataway (2015)

    Google Scholar 

  21. Khambhammettu, H., Boulares, S., Adi, K., et al.: A framework for risk assessment in access control systems. Comput. Secur. 39, 86–103 (2013)

    Article  Google Scholar 

  22. Miettinen, M., Heuser, S., Kronz, W., et al.: ConXsense: automated context classification for context-aware access control. In: Proceedings of ACM symposium on information, computer and communications security, pp. 293–304. ACM Press, New York (2014)

    Chapter  Google Scholar 

  23. Santos, D., Ricardo, D., Westphall, C.M., et al.: A dynamic risk-based access control architecture for cloud computing. In: Proceedings of Asia-Pacific network operations and management symposium, pp. 1–9. IEEE Press, Piscataway (2014)

    Google Scholar 

  24. Zhen, H., Hao, L., Min, Z., et al.: Risk-adaptive access control model for big data in healthcare. J. Commun. 36(12), 190–199 (2015)

    Google Scholar 

  25. Ning, J.T., Cao, Z.F., Dong, X., et al.: Auditable-time outsourced attribute-based encryption for access control in cloud computing. IEEE Trans. Inf. Forensics Secur. 13(1), 94–105 (2018)

    Article  Google Scholar 

  26. Yang, K., Liu, Z., Jia, X.H., et al.: Time-domain attribute-based access control for cloud-based video content sharing: a cryptographic approach. IEEE Trans. Multimed. 18(5), 940–950 (2016)

    Article  Google Scholar 

  27. Yan, Z., Li, X., Wang, M.J.: Flexible data access control based on trust and reputation in cloud computing. IEEE Trans Cloud Comput. 5(3), 485–498 (2017)

    Article  Google Scholar 

  28. Dang, N., Park, J., Sandhu, R.: A provenance-based access control model for dynamic separation of duties. In: Proceedings of International Conference on privacy, security and trust, pp. 247–256. IEEE Press, Piscataway (2013)

    Google Scholar 

  29. Sun, L.S., Park, J., Dang, N., et al.: A provenance-aware access control framework with typed provenance. IEEE Trans Dependable Secure Comput. 13(4), 411–423 (2016)

    Article  Google Scholar 

  30. Pearson, S., Casassa-mont, M.: Sticky policies: an approach for managing privacy across multiple parties. Computer. 44(9), 60–68 (2011)

    Article  Google Scholar 

  31. Spyra, G., Buchanan, W.J., Ekonomou, E.: Sticky policies approach within cloud computing. Comput. Secur. 70, 366–375 (2017)

    Article  Google Scholar 

  32. Dengguo, F., Jingbin, L., Qin, Y., et al.: Trusted computing theory and technology in innovation-driven development. Sci Sin. 50(8), 1127–1147 (2020)

    Article  Google Scholar 

  33. State Cryptography Administration. Information security technology-Function and interface specification of cryptographic support platform for trusted computing. GB/T 29829–2013

    Google Scholar 

  34. Francillon, A., Nguyen, Q., Rasmussen, K.B., et al.: A minimalist approach to remote attestation. In: 2014 design, automation & test in Europe conference & exhibition, pp. 1–6. IEEE Press, Piscataway (2014)

    Google Scholar 

  35. Tian, J.S., Jing, Z.: Research and implementation of active dynamic measurement based on TPCM. Netinfo Secur. 16(6), 22 (2016)

    Google Scholar 

  36. Huang, J., Shi, W.C.: The TPCM active measurement and power control design for ATX motherboard. Netinfo Secur. 11, 1–5 (2016)

    Google Scholar 

  37. Ekberg, J.E., Kostiainen, K., Asokan, N.: Trusted execution environments on mobile devices. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pp. 1497–1498. ACM Press, New York (2013)

    Chapter  Google Scholar 

  38. Raj, H., Saroiu, S., Wolman, A., et al.: fTPM: a firmware-based TPM 2.0 implementation. Microsoft Res. 12, 1–22 (2015)

    Google Scholar 

  39. Dong, P., Ding, Y., Jiang, Z., et al.: Design and implementation of TPM/TCM with active trust based on TEE. Journal of Software. 31(5), 1392–1405 (2020)

    Google Scholar 

  40. Mcmahan, H.B., Moore, E., Ramage, D., et al.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  41. Zhu, L.G., Liu, Z.J., Han, S.: Deep leakage from gradients. In: Advances in neural information processing systems, vol. 32, pp. 14774–14784. Curran Associates, Inc. (2019)

    Google Scholar 

  42. Melis, L., Song, C.Z., Cristofaro, E.D., et al.: Exploiting unintended feature leakage in collaborative learning. In: IEEE symposium on security and privacy (SP), pp. 691–706. IEEE (2019)

    Google Scholar 

  43. Zhang, C.L., Li, S.Y., Xia, J.Z., et al.: Batchcrypt: efficient homomorphic encryption for cross-silo federated learning. In: USENIX annual technical conference, pp. 493–506. USENIX Association (2020)

    Google Scholar 

  44. Bonawitz, K.A., Ivanov, V., Kreuter, B., et al.: Practical secure aggregation for privacy-preserving machine learning. In: ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 1175–1191. ACM (2017)

    Google Scholar 

  45. Truex, S., Liu, L., Chow, K.H., et al.: LDP-fed: federated learning with local differential privacy. In: Proceedings of the third ACM international workshop on edge systems, analytics and networking, pp. 61–66. ACM (2020)

    Chapter  Google Scholar 

  46. Sweeney, L.: K-anonymity: a model for protecting privacy. Int J Uncertain Fuzz. 10(5), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  47. Lefevre, K., Dewitt, D.J., Ramakrishnan, R.: Incognito: efficient full-domain k-anonymity. In: Proceedings of the 2005 ACM SIGMOD international conference on management of data, pp. 49–60. ACM Press, New York (2005)

    Chapter  Google Scholar 

  48. Machanavajjhala, A., Kifer, D., Gehrke, J., et al.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data. 1(1), 3 (2007)

    Article  Google Scholar 

  49. Liu, F.Y., Hua, K.A., Cai, Y.: Query L-diversity in location-based services. In: 2009 Tenth International Conference on mobile data management: systems, services and middleware, pp. 436–442. IEEE Press, Piscataway (2009)

    Chapter  Google Scholar 

  50. Li, N.H., Li, T.C., Venkatasubramanian, S.: T-closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115. IEEE Press, Piscataway (2007)

    Chapter  Google Scholar 

  51. Rebollo-monedero, D., Forne, J., Domingo-ferrer, J.: From t-closeness- like privacy to postrandomization via information theory. IEEE Trans. Knowl. Data Eng. 22(11), 1623–1636 (2010)

    Article  Google Scholar 

  52. Tojiboev, R., Lee, W., Lee, C.C.: Adding noise trajectory for providing privacy in data publishing by vectorization. In: 2020 IEEE International Conference on Big Data and Smart Computing, pp. 432–434. IEEE Press, Piscataway (2020)

    Google Scholar 

  53. Wang, Y.F., Li, M.Z., Luo, S.S., et al.: LRM: a location recombination mechanism for achieving trajectory k-anonymity privacy protection. IEEE Access. 7, 1–20 (2019)

    Google Scholar 

  54. Naghizade, E., Kulik, L., Tanin, E., et al.: Privacy- and context-aware release of trajectory data. ACM Trans Spat Algorithms Syst. 6(1), 1–25 (2020)

    Article  Google Scholar 

  55. Chen, C.M., Luo, Y.L., Yu, Q.Y., et al.: TPPG: privacy-preserving trajectory data publication based on 3D-grid partition. Intell Data Anal. 23(3), 503–533 (2019)

    Article  Google Scholar 

  56. Dai, Y., Shao, J., Wei, C.B., et al.: Personalized semantic trajectory privacy preservation through trajectory reconstruction. World Wide Web. 21(4), 875–914 (2018)

    Article  Google Scholar 

  57. Cao, Y., Xiao, Y.H., Xiong, L., et al.: PriSTE: protecting spatiotemporal event privacy in continuous location-based services. Proceed VLDB Endow. 12(12), 1866–1869 (2019)

    Article  Google Scholar 

  58. Huang, Y., Huo, Z., Meng, X.F.: CoPrivacy:A Collaborative Location Privacy-Preserving Method without Cloaking Region. Chin J Computers. 34(10), 1976–1985 (2011)

    Article  Google Scholar 

  59. Shaham, S., Ding, M., Liu, B., et al.: Privacy preservation in location-based services: a novel metric and attack model. IEEE Trans. Mob. Comput. PP(99), 1–13 (2020)

    Google Scholar 

  60. Li, Y.H., Cao, X., Yuan, Y., et al.: PrivSem: protecting location privacy using semantic and differential privacy. World Wide Web. 22(6), 2407–2436 (2019)

    Article  Google Scholar 

  61. Gedik, B., Liu, L.: Location privacy in mobile systems: a personalized anonymization model. In: Proceedings of the 25th IEEE International Conference on Distributed Computing Systems, pp. 620–629. IEEE Press, Piscataway (2005)

    Google Scholar 

  62. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: query processing for location services without compromising privacy. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 12–15. IEEE Press, Piscataway (2006)

    Google Scholar 

  63. Zhao, Y.N., Luo, Y.L., Yu, Q.Y., et al.: A privacy-preserving trajectory publication method based on secure start-points and end-points. Mob. Inf. Syst. 2020(12), 1–12 (2020)

    Google Scholar 

  64. Tu, Z., Zhao, K., Xu, F.L., et al.: Protecting trajectory from semantic attack considering k-anonymity, l-diversity and t-closeness. IEEE Trans. Netw. Serv. Manag. 16(1), 264–278 (2018)

    Article  Google Scholar 

  65. Xiao, Z., Xu, J.L., Meng, X.F.: P-sensitivity: a semantic privacy-protection model for location-based services. In: 2008 Ninth International Conference on Mobile Data Management Workshops, pp. 47–54. IEEE Press, Piscataway (2008)

    Chapter  Google Scholar 

  66. Dewri, R., Ray, I., Ray, I., et al.: Query m-invariance: preventing query disclosures in continuous location-based services. In: 2010 Eleventh International Conference on Mobile Data Management, pp. 95–104. IEEE Press, Piscataway (2010)

    Chapter  Google Scholar 

  67. Sei, Y., Okumura, H., Takenouchi, T., et al.: Anonymization of sensitive quasi-identifiers for l-diversity and t-closeness. IEEE Trans Depend Secure Comput. 16(4), 580–593 (2017)

    Article  Google Scholar 

  68. Dwork, C.: Differential privacy: a survey of results. In: International Conference on Theory and Applications of Models of Computation, pp. 1–19. Springer, Berlin (2008)

    Google Scholar 

  69. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 429–438. IEEE Press, Piscataway (2013)

    Chapter  Google Scholar 

  70. Tang, J., Korolova, A., Bai, X.L., et al.: Privacy loss in apple’s implementation of differential privacy on MacOs 10.12. arXiv Preprint, arXiv:1709.02753 (2017)

    Google Scholar 

  71. Erlingsson, L., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 1054–1067. ACM Press, New York (2014)

    Chapter  Google Scholar 

  72. Dwork, C., Rothblum, G.N.: Concentrated differential privacy. arXiv Preprint, arXiv:1603.01887 (2016)

    Google Scholar 

  73. Soria-comas, J., Domingo-ferrer, J., Sanchez, D., et al.: Individual differential privacy: a utility-preserving formulation of differential privacy guarantees. IEEE Trans. Inf. Forensics Secur. 12(6), 1418–1429 (2017)

    Article  Google Scholar 

  74. Yang, B., Sato, I., Nakagawa, H.: Bayesian differential privacy on correlated data. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 747–762. ACM Press, New York (2015)

    Chapter  Google Scholar 

  75. He, K., Zhang, X.Y., Ren, S.Q., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE Press, Piscataway (2016)

    Google Scholar 

  76. Osia, S.A., Shamsabadi, A.S., Taheri, A., et al.: Privacy-preserving deep inference for rich user data on the cloud. arXiv Preprint, arXiv:1710.01727 (2017)

    Google Scholar 

  77. Tran, L., Kong, D., Jin, H.X., et al.: Privacy-cnh: a framework to detect photo privacy with convolutional neural network using hierarchical features. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 1–7. AAAI Press, Palo Alto (2016)

    Google Scholar 

  78. Yu, J., Zhang, B.P., Kuang, Z.Z., et al.: iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans. Inf. Forensics Secur. 12(5), 1005–1016 (2016)

    Article  Google Scholar 

  79. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM Press, New York (2015)

    Chapter  Google Scholar 

  80. Abadi, M., Chu, A., Goodfellow, I., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318. ACM Press, New York (2016)

    Chapter  Google Scholar 

  81. Wei, K., Li, J., Ding, M., et al.: Federated learning with differential privacy: algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454–3469 (2020)

    Article  Google Scholar 

  82. Truex, S., Baracaldo, N., Anwar, A., et al.: A hybrid approach to privacy- preserving federated learning. arXiv Preprint, arXiv:1812.03224 (2018)

    Google Scholar 

  83. Zhang, J., Zhang, Z.J., Xiao, X.K., et al.: Functional mechanism: regression analysis under differential privacy. Proceed VLDB Endow. 5(11), 1364–1375 (2012)

    Article  Google Scholar 

  84. Rubinstein, B.I.P., Bartlett, P.L., Huang, L., et al.: Learning in a large function space: privacy-preserving mechanisms for SVM learning. arXiv Preprint, arXiv:0911.5708 (2009)

    Google Scholar 

  85. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. J. Mach. Learn. Res. 12(3), 1–41 (2011)

    MathSciNet  Google Scholar 

  86. Yu, L., Liu, L., Pu, C., et al.: Differentially private model publishing for deep learning. In: 2019 IEEE Symposium on Security and Privacy, pp. 332–349. IEEE Press, Piscataway (2019)

    Chapter  Google Scholar 

  87. Nasr, M., Shokri, R.: Improving deep learning with differential privacy using gradient encoding and denoising. arXiv Preprint, arXiv:2007.11524 (2020)

    Google Scholar 

  88. Jayaraman, B., Evans, D.: Evaluating differentially private machine learning in practice. In: Proceedings of the 28th USENIX Conference on Security Symposium, pp. 1895–1912. USENIX Association, Berkeley (2019)

    Google Scholar 

  89. Xu, C.G., Ren, J., Zhang, D.Y., et al.: GANobfuscator: mitigating information leakage under GAN via differential privacy. IEEE Trans. Inf. Forensics Secur. 14(9), 2358–2371 (2019)

    Article  Google Scholar 

  90. Papernot, N., Thakurta, A., Song, S., et al.: Tempered sigmoid activations for deep learning with differential privacy. arXiv Preprint, arXiv: 2007.14193 (2020)

    Google Scholar 

  91. Dwork, C., Mcsherry, F., Nissim, K., et al.: Calibrating noise to sensitivity in private data analysis. In: Proceedings of the Third Conference on THEORY of Cryptography, pp. 265–284. Springer, Berlin (2006)

    Chapter  Google Scholar 

  92. Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 765–774. ACM Press, New York (2010)

    Chapter  Google Scholar 

  93. Hardt, M., Rothblum, G.N.: A Multiplicative weights mechanism for privacy- preserving data analysis. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 61–70. IEEE Press, Piscataway (2010)

    Chapter  Google Scholar 

  94. Gupta, A., Roth, A., Ullman, J.: Iterative constructions and private data release. In: Theory of Cryptography Conference, pp. 339–356. Springer, Berlin (2012)

    Chapter  Google Scholar 

  95. Fan, L.Y., Xiong, L.: An adaptive approach to real-time aggregate monitoring with differential privacy. IEEE Trans. Knowl. Data Eng. 26(9), 2094–2106 (2013)

    Google Scholar 

  96. Kellaris, G., Papadopoulos, S., Xiao, X., et al.: Differentially private event sequences over infinite streams. Proceed VLDB Endow. 7(12), 1155–1166 (2014)

    Article  Google Scholar 

  97. Wang, Q., Zhang, Y., Lu, X., et al.: Real-time and spatio-temporal crowd-sourced social network data publishing with differential privacy. IEEE Trans Depend Secure Comput. 15(4), 591–606 (2016)

    Google Scholar 

  98. Lv, D.L., Zhu, S.B.: Achieving correlated differential privacy of big data publication. Comput. Secur. 82, 184–195 (2019)

    Article  Google Scholar 

  99. Li, S.Y., Ji, X.S., You, W.: A personalized differential privacy protection method for repeated queries. In: 2019 IEEE 4th International Conference on Big Data Analytics, pp. 274–280. IEEE Press, Piscataway (2019)

    Google Scholar 

  100. Xiao, X.K., Wang, G.Z., Gehrke, J.: Differential privacy via wavelet transforms. IEEE Trans. Knowl. Data Eng. 23(8), 1200–1214 (2010)

    Article  Google Scholar 

  101. Li, C., Hay, M., Rastogi, V., et al.: Optimizing linear counting queries under differential privacy. In: Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 123–134. ACM Press, New York (2010)

    Chapter  Google Scholar 

  102. Xu, J., Zhang, Z.J., Xiao, X.K., et al.: Differentially private histogram publication. VLDB J. 22(6), 797–822 (2013)

    Article  Google Scholar 

  103. Acs, G., Castelluccia, C., Chen, R.: Differentially private histogram publishing through lossy compression. In: 2012 IEEE 12th International Conference on Data Mining, pp. 1–10. IEEE Press, Piscataway (2012)

    Google Scholar 

  104. Zhang, X.J., Chen, R., Xu, J.L., et al.: Towards accurate histogram publication under differential privacy. In: Proceedings of the 2014 SIAM International Conference on Data Mining, pp. 587–595. Society for Industrial and Applied Mathematics (2014)

    Google Scholar 

  105. Ma, Z., Zhang, T., Liu, X.M., et al.: Real-time privacy-preserving data release over vehicle trajectory. IEEE Trans. Veh. Technol. 68(8), 8091–8102 (2019)

    Article  Google Scholar 

  106. Li, F.Y., Yang, J., Xue, L., et al.: Real-time trajectory data publishing method with differential privacy. In: 2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks, pp. 177–182. IEEE Press, Piscataway (2018)

    Google Scholar 

  107. Wu, G.Q., Xia, X.Y., He, Y.P.: Extending differential privacy for treating dependent records via information theory. arXiv Preprint, arXiv:1703.07474 (2017)

    Google Scholar 

  108. Peng, C.G., Ding, H.F., Zhu, Y.J., et al.: Information entropy models and privacy metrics methods for privacy protection. J Soft. 27(8), 1891–1903 (2016)

    MathSciNet  Google Scholar 

  109. Wu, S., Wang, X., Wang, S.J., et al.: K-anonymity for crowdsourcing database. IEEE Trans. Knowl. Data Eng. 26(9), 2207–2221 (2013)

    Google Scholar 

  110. Cuff, P., Yu, L.: Differential privacy as a mutual information constraint. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 43–54. ACM Press, New York (2016)

    Chapter  Google Scholar 

  111. Asoodeh, S., Alajaji, F., Linder, T.: Notes on information-theoretic privacy. In: 2014 52nd Annual Allerton Conference on Communication, Control, and Computing, pp. 1272–1278. IEEE Press, Piscataway (2014)

    Google Scholar 

  112. Oya, S., Troncoso, C., Pérez-gonzález, F.: Back to the drawing board: revisiting the design of optimal location privacy-preserving mechanisms. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1959–1972. ACM Press, New York (2017)

    Chapter  Google Scholar 

  113. Ma, C.Y.T., Yau, D.K.Y.: On information-theoretic measures for quantifying privacy protection of time-series data. In: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, pp. 427–438. ACM Press, New York (2015)

    Chapter  Google Scholar 

  114. Ding, Z.Y., Wang, Y.X., Wang, G., et al.: Detecting violations of differential privacy. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 475–489. ACM Press, New York (2018)

    Chapter  Google Scholar 

  115. Bichsel, B., Gehr, T., Drachsler-cohen, D., et al.: Dp-finder: finding differential privacy violations by sampling and optimization. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 508–524. ACM Press, New York (2018)

    Chapter  Google Scholar 

  116. Gervais, A., Shokri, R., Singla, A., et al.: Quantifying web-search privacy. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 966–977. ACM Press, New York (2014)

    Chapter  Google Scholar 

  117. Cao, Y., Yoshikawa, M., Xiao, Y.H., et al.: Quantifying differential privacy in continuous data release under temporal correlations. IEEE Trans. Knowl. Data Eng. 31(7), 1281–1295 (2018)

    Article  Google Scholar 

  118. Shokri, R., Theodorakopoulos, G., Le Boudec, J., et al.: Quantifying location privacy. In: 2011 IEEE Symposium on Security and Privacy, pp. 247–262. IEEE Press, Piscataway (2011)

    Chapter  Google Scholar 

  119. Wu, X.T., Wu, T.T., Khan, M., et al.: Game theory based correlated privacy preserving analysis in big data. IEEE Trans Big Data. 7(4), 643–656 (2017)

    Google Scholar 

  120. Zhang, Z.K., He, S.B., Chen, J.M., et al.: REAP: an efficient incentive mechanism for reconciling aggregation accuracy and individual privacy in crowdsensing. IEEE Trans. Inf. Forensics Secur. 13(99), 2995–3007 (2017)

    Google Scholar 

  121. Jialin, L., Shuyang, S., Yuemei, Z., et al.: Effective and efficient approach for graph de-anonymization. J Softw. 29(3), 772–785 (2018)

    Google Scholar 

  122. Narayanan, A., Vitaly, S.: De-anonymizing social networks. In: 30th IEEE Symposium on Security and Privacy, pp. 173–187. IEEE Press, Piscataway (2009)

    Google Scholar 

  123. Yartseva, L., Grossglauser, M.: On the performance of percolation graph matching. In: Proceedings of the First ACM Conference on Online Social Networks, pp. 119–130. ACM Press, New York (2013)

    Chapter  Google Scholar 

  124. Kazemi, E., Hassani, S.H., Grossglauser, M.: Growing a graph matching from a handful of seeds. ProcVLDB Endow. 8(10), 1010–1021 (2015)

    Article  Google Scholar 

  125. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou R3579X? anonymized social networks, hidden patterns, and structural steganography. In: Proceedings of the 16th International Conference on World Wide Web, pp. 181–190. ACM Press, New York (2007)

    Chapter  Google Scholar 

  126. Wang, Y.X., Ding, Z.Y., Kifer, D., et al.: CheckDP: an automated and integrated approach for proving differential privacy or finding precise counterexamples. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 919–938. ACM Press, New York (2020)

    Chapter  Google Scholar 

  127. Crandall, D.J., Backstrom, L., Cosley, D., et al.: Inferring social ties from geographic coincidences. Proc. Natl. Acad. Sci. 107(52), 22436–22441 (2010)

    Article  Google Scholar 

  128. Davis, C.A., Pappa, G.L., De Oliviera, D.R.R., et al.: Inferring the location of twitter messages based on user relationships. Trans. GIS. 15(6), 735–751 (2011)

    Article  Google Scholar 

  129. Ma, C.Y.T., Yau, D.K.Y., Yip, N.K., et al.: Privacy vulnerability of published anonymous mobility traces. IEEE/ACM Trans. Networking. 21(3), 720–733 (2013)

    Article  Google Scholar 

  130. Zang, H., Jean, B.: Anonymization of location data does not work: a large-scale measurement study. In: Proceedings of the 17th Annual International Conference on Mobile Computing and Networking, pp. 145–156. ACM Press, New York (2011)

    Chapter  Google Scholar 

  131. Caimei, W., Yajun, G., Yanhua, G.: Privacy metric for User’s trajectory in location-based services. J Softw. 23(2), 352–360 (2012)

    Article  Google Scholar 

  132. Chang, S., Li, C., Zhu, H.Z., et al.: Revealing privacy vulnerabilities of anonymous trajectories. IEEE Trans. Veh. Technol. 67(12), 12061–12071 (2018)

    Article  Google Scholar 

  133. Fenghua, L., Hui, L., Yan, J., et al.: Privacy computing:concept,connotation and its research trend. J. Commun. 37(4), 1–11 (2016)

    Google Scholar 

  134. Li, F.H., Li, H., Niu, B., et al.: Privacy computing: concept, computing framework, and future development trends. ELSEVIER Eng. 5(6), 1179–1192 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghua Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, F., Li, H., Niu, B. (2024). Advances in Privacy Preservation Technologies. In: Privacy Computing . Springer, Singapore. https://doi.org/10.1007/978-981-99-4943-4_2

Download citation

Publish with us

Policies and ethics