Abstract
Smart digital advertising platforms have been widely arising. These platforms require a human face detector with gender identification to assist them in the determination of providing relevant advertisements. The detector is also prosecuted to identify the gender of a masked face in post-coronavirus situations and demanded to operate on a CPU device to lower system expenses. This work presents a lightweight Convolution Neural Network (CNN) architecture to build a gender identification integrated with face detection to respond to these issues. This work proposes a split-based inception block to efficiently extract features at various sizes by partially applying different convolution kernel sizes, levels, and regulated attention module to improve the quality of the feature map. It produces slight parameters that drive the architecture efficiency and can operate quickly in real-time. To validate the performance of the proposed architecture, UTKFace and Labeled Faces in the Wild (LFW) datasets, modified with an artificial mask, are utilized as training and validation datasets. This offered architecture is compared to different lightweight and deep architectures. Regarding the experiment results, the proposed architecture outperforms masked face gender identification on the two datasets. In addition, the proposed architecture, which integrates with face detection to become a human face detector with gender identification can run 135 frames per second in real-time on a CPU configuration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alhalabi, M., Hussein, N., Khan, E., Habash, O., Yousaf, J., Ghazal, M.: Sustainable smart advertisement display using deep age and gender recognition. In: 2021 International Conference on Decision Aid Sciences and Application (DASA), pp. 33–37. IEEE (2021)
Anwar, A., Raychowdhury, A.: Masked face recognition for secure authentication. arXiv preprint arXiv:2008.11104 (2020)
Bandung, Y., Hendra, Y.F., Subekti, L.B.: Design and implementation of digital signage system based on Raspberry Pi 2 for e-tourism in Indonesia. In: 2015 International Conference on Information Technology Systems and Innovation (ICITSI), pp. 1–6. IEEE (2015)
Greco, A., Saggese, A., Vento, M.: Digital signage by real-time gender recognition from face images. In: 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, pp. 309–313. IEEE (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2019)
Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020). https://doi.org/10.1109/TPAMI.2019.2913372
Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)
Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Mishima, K., Sakurada, T., Hagiwara, Y.: Low-cost managed digital signage system with signage device using small-sized and low-cost information device. In: 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 573–575. IEEE (2017)
Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: BAM: bottleneck attention module. arXiv preprint arXiv:1807.06514 (2018)
Priadana, A., Maarif, M.R., Habibi, M.: Gender prediction for Instagram user profiling using deep learning. In: 2020 International Conference on Decision Aid Sciences and Application (DASA), pp. 432–436. IEEE (2020)
Priadana, A., Putro, M.D., Jeong, C., Jo, K.H.: A fast real-time face gender detector on CPU using superficial network with attention modules. In: 2022 International Workshop on Intelligent Systems (IWIS), pp. 1–6 (2022). https://doi.org/10.1109/IWIS56333.2022.9920714
Priadana, A., Putro, M.D., Jo, K.H.: An efficient face gender detector on a CPU with multi-perspective convolution. In: 2022 13th Asian Control Conference (ASCC), pp. 453–458 (2022). https://doi.org/10.23919/ASCC56756.2022.9828048
Priadana, A., Putro, M.D., Vo, X.T., Jo, K.H.: An efficient face-based age group detector on a CPU using two perspective convolution with attention modules. In: 2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6. IEEE (2022)
Putro, M.D., Nguyen, D.L., Jo, K.H.: Lightweight convolutional neural network for real-time face detector on CPU supporting interaction of service robot. In: 2020 13th International Conference on Human System Interaction (HSI), pp. 94–99. IEEE (2020)
Putro, M.D., Priadana, A., Nguyen, D.L., Jo, K.H.: A faster real-time face detector support smart digital advertising on low-cost computing device. In: 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 171–178 (2022). https://doi.org/10.1109/AIM52237.2022.9863289
Ranjan, R., Patel, V.M., Chellappa, R.: HyperFace: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 121–135 (2017)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520. IEEE (2018)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826. IEEE (2016)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Zhang, H., Zu, K., Lu, J., Zou, Y., Meng, D.: EPSANet: an efficient pyramid squeeze attention block on convolutional neural network. In: Proceedings of the Asian Conference on Computer Vision, pp. 1161–1177 (2022)
Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5810–5818 (2017)
Acknowledgment
This result was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Priadana, A., Putro, M.D., Nguyen, DL., Vo, XT., Jo, KH. (2023). Human Face Detector with Gender Identification by Split-Based Inception Block and Regulated Attention Module. In: Na, I., Irie, G. (eds) Frontiers of Computer Vision. IW-FCV 2023. Communications in Computer and Information Science, vol 1857. Springer, Singapore. https://doi.org/10.1007/978-981-99-4914-4_13
Download citation
DOI: https://doi.org/10.1007/978-981-99-4914-4_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-4913-7
Online ISBN: 978-981-99-4914-4
eBook Packages: Computer ScienceComputer Science (R0)