Nothing Special   »   [go: up one dir, main page]

Skip to main content

Human Face Detector with Gender Identification by Split-Based Inception Block and Regulated Attention Module

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2023)

Abstract

Smart digital advertising platforms have been widely arising. These platforms require a human face detector with gender identification to assist them in the determination of providing relevant advertisements. The detector is also prosecuted to identify the gender of a masked face in post-coronavirus situations and demanded to operate on a CPU device to lower system expenses. This work presents a lightweight Convolution Neural Network (CNN) architecture to build a gender identification integrated with face detection to respond to these issues. This work proposes a split-based inception block to efficiently extract features at various sizes by partially applying different convolution kernel sizes, levels, and regulated attention module to improve the quality of the feature map. It produces slight parameters that drive the architecture efficiency and can operate quickly in real-time. To validate the performance of the proposed architecture, UTKFace and Labeled Faces in the Wild (LFW) datasets, modified with an artificial mask, are utilized as training and validation datasets. This offered architecture is compared to different lightweight and deep architectures. Regarding the experiment results, the proposed architecture outperforms masked face gender identification on the two datasets. In addition, the proposed architecture, which integrates with face detection to become a human face detector with gender identification can run 135 frames per second in real-time on a CPU configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhalabi, M., Hussein, N., Khan, E., Habash, O., Yousaf, J., Ghazal, M.: Sustainable smart advertisement display using deep age and gender recognition. In: 2021 International Conference on Decision Aid Sciences and Application (DASA), pp. 33–37. IEEE (2021)

    Google Scholar 

  2. Anwar, A., Raychowdhury, A.: Masked face recognition for secure authentication. arXiv preprint arXiv:2008.11104 (2020)

  3. Bandung, Y., Hendra, Y.F., Subekti, L.B.: Design and implementation of digital signage system based on Raspberry Pi 2 for e-tourism in Indonesia. In: 2015 International Conference on Information Technology Systems and Innovation (ICITSI), pp. 1–6. IEEE (2015)

    Google Scholar 

  4. Greco, A., Saggese, A., Vento, M.: Digital signage by real-time gender recognition from face images. In: 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, pp. 309–313. IEEE (2020)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE (2016)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  7. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  8. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2019)

    Article  Google Scholar 

  9. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020). https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  10. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  11. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

  12. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  13. Mishima, K., Sakurada, T., Hagiwara, Y.: Low-cost managed digital signage system with signage device using small-sized and low-cost information device. In: 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 573–575. IEEE (2017)

    Google Scholar 

  14. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: BAM: bottleneck attention module. arXiv preprint arXiv:1807.06514 (2018)

  15. Priadana, A., Maarif, M.R., Habibi, M.: Gender prediction for Instagram user profiling using deep learning. In: 2020 International Conference on Decision Aid Sciences and Application (DASA), pp. 432–436. IEEE (2020)

    Google Scholar 

  16. Priadana, A., Putro, M.D., Jeong, C., Jo, K.H.: A fast real-time face gender detector on CPU using superficial network with attention modules. In: 2022 International Workshop on Intelligent Systems (IWIS), pp. 1–6 (2022). https://doi.org/10.1109/IWIS56333.2022.9920714

  17. Priadana, A., Putro, M.D., Jo, K.H.: An efficient face gender detector on a CPU with multi-perspective convolution. In: 2022 13th Asian Control Conference (ASCC), pp. 453–458 (2022). https://doi.org/10.23919/ASCC56756.2022.9828048

  18. Priadana, A., Putro, M.D., Vo, X.T., Jo, K.H.: An efficient face-based age group detector on a CPU using two perspective convolution with attention modules. In: 2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6. IEEE (2022)

    Google Scholar 

  19. Putro, M.D., Nguyen, D.L., Jo, K.H.: Lightweight convolutional neural network for real-time face detector on CPU supporting interaction of service robot. In: 2020 13th International Conference on Human System Interaction (HSI), pp. 94–99. IEEE (2020)

    Google Scholar 

  20. Putro, M.D., Priadana, A., Nguyen, D.L., Jo, K.H.: A faster real-time face detector support smart digital advertising on low-cost computing device. In: 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 171–178 (2022). https://doi.org/10.1109/AIM52237.2022.9863289

  21. Ranjan, R., Patel, V.M., Chellappa, R.: HyperFace: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 121–135 (2017)

    Article  Google Scholar 

  22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474

  23. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520. IEEE (2018)

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  25. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  26. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826. IEEE (2016)

    Google Scholar 

  28. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  29. Zhang, H., Zu, K., Lu, J., Zou, Y., Meng, D.: EPSANet: an efficient pyramid squeeze attention block on convolutional neural network. In: Proceedings of the Asian Conference on Computer Vision, pp. 1161–1177 (2022)

    Google Scholar 

  30. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5810–5818 (2017)

    Google Scholar 

Download references

Acknowledgment

This result was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adri Priadana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Priadana, A., Putro, M.D., Nguyen, DL., Vo, XT., Jo, KH. (2023). Human Face Detector with Gender Identification by Split-Based Inception Block and Regulated Attention Module. In: Na, I., Irie, G. (eds) Frontiers of Computer Vision. IW-FCV 2023. Communications in Computer and Information Science, vol 1857. Springer, Singapore. https://doi.org/10.1007/978-981-99-4914-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4914-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4913-7

  • Online ISBN: 978-981-99-4914-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics