Nothing Special   »   [go: up one dir, main page]

Skip to main content

Crop Recommendation and Irrigation System Using Machine Learning with Integrated IoT Devices

  • Conference paper
  • First Online:
Data Management, Analytics and Innovation (ICDMAI 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 997))

Included in the following conference series:

  • 172 Accesses

Abstract

In agriculture, timely and efficient irrigation is crucial to achieving maximum crop yield. However, traditional irrigation methods are often inefficient and wasteful, leading to water scarcity and abbreviated crop productivity. To solve these problems, we suggest an intelligent irrigation system that combines IoT devices and machine learning techniques to suggest the best crop for a particular area and deliver the best irrigation based on real-time weather data and soil moisture levels. The system accumulates data on soil nutrients, temperature, and sultriness utilizing IoT sensors and uses XGBoost, a popular machine learning algorithm, to recommend the most lucrative crop predicated on historical data. The system additionally incorporates authentic-time weather data from APIs and water level sensors to provide customized irrigation for each crop. Our system aims to improve crop productivity, minimize water waste, and avail farmers to make data-driven decisions to maximize their profits

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jesi VE et al (2022) IoT enabled smart irrigation and cultivation recommendation system for precision agriculture. ECS Trans 107(1):5953–5967

    Google Scholar 

  2. Rakesh A, Sahu P, Vinoth Kumar CNS et al (2020) Crop recommendation and automated irrigation system. Int J Innovat Technol Expl Eng 9(6); Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP, Apr. 2020, pp 1458–62. Crossref https://doi.org/10.35940/ijitee.e4158.049620.

  3. https://mospi.gov.in/4-agricultural-statistics

  4. Reddy DA et al (2019) Crop recommendation system to maximize crop yield in ramtek region using machine learning. Int J Sci Res Sci Technol, Technosc Acad 485–89. Crossref. https://doi.org/10.32628/ijsrst196172

  5. Gor A et al (2023) Automation in irrigation using IoT and ML based crop recommendation system. ResearchGate

    Google Scholar 

  6. Zampieri M, Ceglar A, Dentener F, Toreti A (2017) Wheat yield loss attributable to heat waves, drought and water excess on the global, national and subnational scales. Environ Res Lett 12:064008

    Article  Google Scholar 

  7. Peraka S et al (2020) Smart irrigation based on crops using IoT. 2020 IEEE 15th international conference on industrial and information systems (ICIIS), IEEE, pp 611–616

    Google Scholar 

  8. Pavan Kumar T, Kumar Lala S, Sravani B, Sandeep A et al (2018) Internet of things survey on crop field smart irrigation automation using IoT. Int J Eng Technol 7(2.8):503

    Google Scholar 

  9. Sharma B, Kumar N (2021) IoT-based intelligent irrigation system for paddy crop using an internet-controlled water pump. Int J Agricul Environ Inf Syst 12:21–36. https://doi.org/10.4018/IJAEIS.20210101.oa2

    Article  Google Scholar 

  10. Kumar A, Bhagavan K, Akhil V, Singh A (2017) Wireless network-based smart irrigation system using IOT. Int J Eng Technol 7:342. https://doi.org/10.14419/ijet.v7i1.1.9849

  11. Rani D, Kumar N, Bhushan B (2019) Implementation of an automated irrigation system for agriculture monitoring using IoT communication, pp 138–143. https://doi.org/10.1109/ISPCC48220.2019.8988390

  12. Atta R, Boutraa T, Akhkha A et al (2011) Smart irrigation system for wheat in saudi arabia using wireless sensors network technology. Psipw.org

    Google Scholar 

  13. Poonia A, Banerjee C, Banerjee A, Sharma S (2021) Smart agriculture using internet of things (IoT) and wireless sensor network: problems and prospects. https://doi.org/10.1007/978-981-16-0942-8_72

  14. Mahendra N (2020) Crop prediction using machine learning approaches. Int J Eng Res Technol V9(08), ESRSA Publications Pvt. Ltd., Aug. 2020. Crossref. https://doi.org/10.17577/ijertv9is080029

  15. Kumar R, Singh M, Kumar P, Singh J (2015) Crop selection method to maximize crop yield rate using machine learning technique. https://doi.org/10.1109/ICSTM.2015.7225403

  16. Aakunuri M, Narsimha G (2023) Crop recommendation and yield prediction for agriculture using data mining techniques. Jetir.org. Accessed 12 Apr 2023

    Google Scholar 

  17. Pandey S, Shrivastava A, Vijay R, Bhandari S et al (2019) A review on smart irrigation and crop prediction system. SSRN Electronic J

    Google Scholar 

  18. Gori A, Singh M, Thanawala O, Vishwakarma A, Shaikh A et al (2007) Smart irrigation system using IoT. IJARCCE, ISO 3297:2007

    Google Scholar 

  19. Bandara P, Weerasooriya T, RT H, Nanayakkara WJM, Dimantha MAC, Pabasara MGP (2020) Crop recommendation system. ResearchGate

    Google Scholar 

  20. Ommane Y, Rhanbouri MA, Chouikh H, Jbene M, Chairi I, Lachgar M, Benjelloun S et al (2022) Machine learning based recommender systems for crop selection: a systematic literature review. Res Square Platform LLC, Sept. 2022. Crossref. https://doi.org/10.21203/rs.3.rs-1224662/v2

  21. Dighe D, Joshi H, Katkar A, Patil S, Kokate S et al (2008) “Survey of crop recommendation systems. Irjet.net. https://www.irjet.net/archives/V5/i11/IRJET-V5I1190.pdf

  22. Shivaprasad KM, Madhu Chandra G, Vidya J (2023) Sustainable automated CROP irrigation design system based on IoT and machine learning. Kalaharijournals.com, Accessed 12 Apr 2023

    Google Scholar 

  23. Kurundkar S, Panzade V, Nagdeve S, Habibi M, Mane M et al (2023) IoT based smart irrigation system. Ymerdigital.com, https://ymerdigital.com/uploads/YMER2111L0.pdf. Accessed 12 Apr 2023

  24. Faisal RH, Saha C, Hasan MH, Kumar Kundu P (2018)Power efficient distant controlled smart irrigation system for AMAN and BORO Rice. In: 2018 21st international conference of computer and information technology (ICCIT), Dhaka, Bangladesh, pp 1–5. https://doi.org/10.1109/ICCITECHN.2018.8631927

  25. García LS et al (2020) IoT-based smart irrigation systems: an overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors MDPI 20(4):1042

    Google Scholar 

  26. Khriji S, El Houssain D, Jmal MW, Viehweger C, Abid M, Kanoun O et al (2014) Precision irrigation based on wireless sensor network. IET Sci Meas Technol Inst Eng Technol (IET)8(3):98–106. Crossref. https://doi.org/10.1049/iet-smt.2013.0137

  27. Kapse R et al (2023) Smart irrigation system and best crop suggestion. Ijirt.org, Accessed 12 Apr 2023

    Google Scholar 

  28. Fazil M, Rohan S, Ashritha C, Nagesh Shetty, Ramalingam HM et al (2022) Smart irrigation for crop management using IoT. Int J Multidisc Res Anal 05(05); Everant J Crossref. https://doi.org/10.47191/ijmra/v5-i5-06

  29. Vallejo-Gómez D, Osorio M, Hincapié CA et al (2023) Smart irrigation systems in agriculture: a systematic review. Agronomy 13(2) MDPI AG, Jan. 2023, p 342. Crossref, https://doi.org/10.3390/agronomy13020342

  30. Ministry of Jal Shakti: http://mowr.gov.in/

  31. Central Water Commission: http://cwc.gov.in/

  32. Indian Council of Agricultural Research: https://www.icar.org.in/

  33. National Institute of Hydrology: http://nihroorkee.gov.in/

  34. Indian Meteorological Department: https://mausam.imd.gov.in/

  35. https://data.gov.in/

  36. https://agritech.tnau.ac.in/govt_schemes_services/govt_serv_schems_nadp_tnau_11_12_Soil.html

  37. Jeevan Y, Nagendra Kumar VS, Vaishnavi VS, Neha K, Devi VGRR et al (2020) Supervised machine learning approach for crop yield prediction in agriculture sector. In: 2020 5th international conference on communication and electronics systems (ICCES), IEEE, June 2020. Crossref. https://doi.org/10.1109/icces48766.2020.9137868

  38. Kumar V, Dave V, Bhadauriya R, Chaudhary S (2013) KrishiMantra agricultural recommendation system. In: ACM symposium of computing for development, Bangalore, India, pp 1–2

    Google Scholar 

  39. Vaishali S, Suraj S, Vignesh G, Dhivya S, Udhayakumar S (2017) Mobile integrated smart irrigation management and monitoring system using IoT. In: 2017 International conference on communication and signal processing (ICCSP), Chennai, India, pp 2164–2167. https://doi.org/10.1109/ICCSP.2017.8286792

  40. Hate M, Jadhav S, Patil H (2018) Vegetable traceability with smart irrigation. In: 2018 international conference on smart city and emerging technology (ICSCET), Mumbai, India, pp 1–4. https://doi.org/10.1109/ICSCET.2018.8537253

  41. Sadia S et al (2021) A fruit cultivation recommendation system based on pearson’s correlation co-efficient. In: 2021 International conference on information and communication technology for sustainable development (ICICT4SD), pp 361–365

    Google Scholar 

  42. Ajmera A, Bhandari M, Kumar Jain H, Agarwal S et al (2022) Crop, fertilizer, and irrigation recommendation using machine learning techniques. Int J Res Appl Sci Eng Technol 10(12); Int J Res Appl Sci Eng Technol (IJRASET), pp 29–35. Crossref

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Abdul Gaffar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, M.U., Dangi, N., Kumar, A., Saproo, V., Agrawal, H., Gaffar, H.A. (2024). Crop Recommendation and Irrigation System Using Machine Learning with Integrated IoT Devices. In: Sharma, N., Goje, A.C., Chakrabarti, A., Bruckstein, A.M. (eds) Data Management, Analytics and Innovation. ICDMAI 2024. Lecture Notes in Networks and Systems, vol 997. Springer, Singapore. https://doi.org/10.1007/978-981-97-3242-5_9

Download citation

Publish with us

Policies and ethics