Abstract
Wi-Fi fingerprint-based localization stands out as one of the most appealing solutions among various indoor localization systems, primarily due to its independence from extra infrastructure and specialized hardware. To propel this approach toward a broader implementation, three key objectives are vital: widespread deployment ubiquity, high localization accuracy, and minimal maintenance costs. Yet, due to formidable challenges such as signal variation, device heterogeneity, and database degradation—all stemming from environmental dynamics—previous efforts often necessitate a compromise among these goals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
M. Youssef, A. Agrawala, The Horus WLAN location determination system, in Proceedings of the ACM MobiSys, 2005, pp. 205–218
C. Wu, J. Xu, Z. Yang, N.D. Lane, Z. Yin, Gain without pain: accurate WiFi-based localization using fingerprint spatial gradient, in Proceedings of the ACM IMWUT, 2017
C. Wu, F. Zhang, Y. Fan, K.J.R. Liu, RF-based inertial measurement, in ACM SIGCOMM, August 19–24, 2019
C. Wu, F. Zhang, B. Wang, K.R. Liu, Easitrack: decimeter-level indoor tracking with graph-based particle filtering. IEEE Internet Things J. 7(3), 2397–2411 (2019)
J. Wang, D. Katabi, Dude, where’s my card? RFID positioning that works with multipath and non-line of sight, in ACM SIGCOMM, 2013, pp. 51–62
L. Shangguan, Z. Yang, A.X. Liu, Z. Zhou, Y. Liu, STPP: spatial temporal phase profiling-based method for relative RFID tag localization. IEEE/ACM Trans. Netw. 25(1), 596–609 (2016)
K. Liu, X. Liu, X. Li, Guoguo: enabling fine-grained indoor localization via smartphone, in Proceeding of the ACM MobiSys, 2013, pp. 235–248
J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan, Z. Yang, Edge assisted mobile semantic visual slam, in Proceedings of the IEEE INFOCOM, 27–30 April 2020
E. Dong, J. Xu, C. Wu, Y. Liu, Z. Yang, Pair-navi: peer-to-peer indoor navigation with mobile visual slam, in Proceedings of the IEEE INFOCOM, 29 April–2 May 2019
E. Dong, J. Liang, Z. Wang, J. Xu, L. Shangguan, Q. Ma, Z. Yang, Improving the applicability of visual peer-to-peer navigation with crowdsourcing, in Proceedings of the IEEE ICPADS, Dec 2–4, 2020
L. Dong, J. Xu, G. Chi, D. Li, X. Zhang, J. Li, Q. Ma, Z. Yang, Enabling surveillance cameras to navigate, in Proceedings of the IEEE ICCCN, 3–6 August 2020
Z. Yang, C. Wu, Y. Liu, Locating in fingerprint space: wireless indoor localization with little human intervention, in Proceedings of the ACM Mobicom, 2012, pp. 269–280
G. Shen, Z. Chen, P. Zhang, T. Moscibroda, Y. Zhang, Walkiemarkie: indoor pathway mapping made easy, in USENIX NSDI, 2013, pp. 85–98
A. Rai, K.K. Chintalapudi, V.N. Padmanabhan, R. Sen, Zee: zero-effort crowdsourcing for indoor localization, in Proceedings of the ACM Mobicom, 2012, pp. 293–304
C. Wu, Z. Yang, Y. Liu, Smartphones based crowdsourcing for indoor localization. IEEE Trans. Mob. Comput. 14(2), 444–457 (2014)
D. Lymberopoulos, J. Liu, The microsoft indoor localization competition: experiences and lessons learned. IEEE Signal Process. Mag. 34(5), 125–140 (2017)
J. Xu, Z. Yang, H. Chen, Y. Liu, X. Zhou, J. Li, N. Lane, Embracing spatial awareness for reliable WiFi-based indoor location systems, in 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), (IEEE, Piscataway, 2018), pp. 281–289
M. Abbas, M. Elhamshary, H. Rizk, M. Torki, M. Youssef, Wideep: WiFi-based accurate and robust indoor localization system using deep learning, in 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom), (IEEE, Piscataway, 2019), pp. 1–10
C. Wu, Z. Yang, Y. Liu, W. Xi, Will: wireless indoor localization without site survey. IEEE Trans Parallel Distrib. Syst. 24(4), 839–848 (2012)
H. Xu, Z. Yang, Z. Zhou, L. Shangguan, K. Yi, Y. Liu, Enhancing WiFi-based localization with visual clues, in Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp. 963–974
X. Chen, H. Li, C. Zhou, X. Liu, D. Wu, G. Dudek, Fido: ubiquitous fine-grained WiFi-based localization for unlabelled users via domain adaptation, in Proceedings of the Web Conference 2020, 2020, pp. 23–33
C. Wu, Z. Yang, C. Xiao, C. Yang, Y. Liu, M. Liu, Static power of mobile devices: self-updating radio maps for wireless indoor localization, in 2015 IEEE Conference on Computer Communications (INFOCOM), (IEEE, Piscataway, 2015), pp. 2497–2505
J. Xu, H. Chen, K. Qian, E. Dong, M. Sun, C. Wu, L. Zhang, Z. Yang, iVR: integrated vision and radio localization with zero human effort. Proc. ACM IMWUT 3(3), 1–22 (2019)
Z. Yang, C. Wu, Z. Zhou, X. Zhang, X. Wang, Y. Liu, Mobility increases localizability: a survey on wireless indoor localization using inertial sensors. ACM Comput. Surv. 47(3), 1–34 (2015)
Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, V. Lempitsky, Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)
W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan, H. Xue, C. Song, X. Ma, D. Koutsonikolas et al., Towards environment independent device free human activity recognition, in Proceedings of the ACM Mobicom, 2018, pp. 289–304
Z.-H. Zhou, M. Li, Semi-supervised regression with co-training. Int. J. Comput. Artif. Intell. 5, 908–913 (2005)
D.-D. Chen, W. Wang, Z.-H. Zhou, Tri-net for semi-supervised deep learning, in Proceedings of Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018, pp. 2014–2020
M. Zhao, S. Yue, D. Katabi, T.S. Jaakkola, M.T. Bianchi, Learning sleep stages from radio signals: a conditional adversarial architecture, in International Conference on Machine Learning, 2017
J.-W. Jang, S.-N. Hong, Indoor localization with WiFi fingerprinting using convolutional neural network, in Proceeding of the IEEE ICUFN, 2018
X. Song, X. Fan, C. Xiang, Q. Ye, L. Liu, Z. Wang, X. He, N. Yang, G. Fang, A novel convolutional neural network based indoor localization framework with WiFi fingerprinting. IEEE Access 7, 110698–110709 (2019)
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems, 2012, pp. 1097–1105
J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, et al., Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)
Z. Sun, Y. Chen, J. Qi, J. Liu, Adaptive localization through transfer learning in indoor Wi-Fi environment, in Seventh International Conference on Machine Learning and Applications, (IEEE, Piscataway, 2008)
L. van der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
M.-F. Balcan, A. Blum, K. Yang, Co-training and expansion: towards bridging theory and practice, in Advances in Neural Information Processing Systems, 2005, pp. 89–96
W. Wang, Z.-H. Zhou, A new analysis of co-training, in ICML, 2010
A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in Proceedings of the Eleventh Annual Conference on Computational Learning Theory, 1998, pp. 92–100
M.-F. Balcan, A. Blum, A discriminative model for semi-supervised learning. J. ACM 57(3), 1–46 (2010)
K. Saito, Y. Ushiku, T. Harada, Asymmetric tri-training for unsupervised domain adaptation, arXiv preprint arXiv:1702.08400, 2017
Y. Shu, Y. Huang, J. Zhang, P. Coué, P. Cheng, J. Chen, K.G. Shin, Gradient-based fingerprinting for indoor localization and tracking. IEEE Trans. Ind. Electron. 63(4), 24242433 (2015)
S. He, B. Ji, S.-H.G. Chan, Chameleon: survey-free updating of a fingerprint database for indoor localization. IEEE Pervasive Comput 15(4), 66–75 (2016)
Y. Chen, Q. Yang, J. Yin, X. Chai, Power-efficient access-point selection for indoor location estimation. IEEE Trans. Knowl. Data Eng. 18(7), 877–888 (2006)
S. He, S.-H.G. Chan, Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons. IEEE Commun. Surv. Tutor 18(1), 466–490 (2015)
L. Li, G. Shen, C. Zhao, T. Moscibroda, J.-H. Lin, F. Zhao, Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service, in Proceedings of the ACM Mobicom, 2014, pp. 459–470
P. Mirowski, P. Whiting, H. Steck, R. Palaniappan, M. MacDonald, D. Hartmann, T.K. Ho, Probability kernel regression for WiFi localisation. J. Locat. Based Serv. 6(2), 81100 (2012)
S.J. Pan, V.W. Zheng, Q. Yang, D.H. Hu, Transfer learning for WiFi-based indoor localization, in AAAI, vol. 6, 2008
H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, R.R. Choudhury, No need to war-drive: unsupervised indoor localization, in Proceedings of the ACM Mobisys, 2012
S. He, W. Lin, S.-H.G. Chan, Indoor localization and automatic fingerprint update with altered AP signals. IEEE Trans. Mob. Comput. 16(7), 1897–1910 (2016)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Liu, Y., Yang, Z. (2024). Automatic Fingerprint Database Update. In: Location, Localization, and Localizability. Springer, Singapore. https://doi.org/10.1007/978-981-97-3176-3_9
Download citation
DOI: https://doi.org/10.1007/978-981-97-3176-3_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-3175-6
Online ISBN: 978-981-97-3176-3
eBook Packages: Computer ScienceComputer Science (R0)