Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Fingerprint Database Update

  • Chapter
  • First Online:
Location, Localization, and Localizability
  • 74 Accesses

Abstract

Wi-Fi fingerprint-based localization stands out as one of the most appealing solutions among various indoor localization systems, primarily due to its independence from extra infrastructure and specialized hardware. To propel this approach toward a broader implementation, three key objectives are vital: widespread deployment ubiquity, high localization accuracy, and minimal maintenance costs. Yet, due to formidable challenges such as signal variation, device heterogeneity, and database degradation—all stemming from environmental dynamics—previous efforts often necessitate a compromise among these goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Youssef, A. Agrawala, The Horus WLAN location determination system, in Proceedings of the ACM MobiSys, 2005, pp. 205–218

    Google Scholar 

  2. C. Wu, J. Xu, Z. Yang, N.D. Lane, Z. Yin, Gain without pain: accurate WiFi-based localization using fingerprint spatial gradient, in Proceedings of the ACM IMWUT, 2017

    Google Scholar 

  3. C. Wu, F. Zhang, Y. Fan, K.J.R. Liu, RF-based inertial measurement, in ACM SIGCOMM, August 19–24, 2019

    Google Scholar 

  4. C. Wu, F. Zhang, B. Wang, K.R. Liu, Easitrack: decimeter-level indoor tracking with graph-based particle filtering. IEEE Internet Things J. 7(3), 2397–2411 (2019)

    Article  Google Scholar 

  5. J. Wang, D. Katabi, Dude, where’s my card? RFID positioning that works with multipath and non-line of sight, in ACM SIGCOMM, 2013, pp. 51–62

    Google Scholar 

  6. L. Shangguan, Z. Yang, A.X. Liu, Z. Zhou, Y. Liu, STPP: spatial temporal phase profiling-based method for relative RFID tag localization. IEEE/ACM Trans. Netw. 25(1), 596–609 (2016)

    Article  Google Scholar 

  7. K. Liu, X. Liu, X. Li, Guoguo: enabling fine-grained indoor localization via smartphone, in Proceeding of the ACM MobiSys, 2013, pp. 235–248

    Google Scholar 

  8. J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan, Z. Yang, Edge assisted mobile semantic visual slam, in Proceedings of the IEEE INFOCOM, 27–30 April 2020

    Google Scholar 

  9. E. Dong, J. Xu, C. Wu, Y. Liu, Z. Yang, Pair-navi: peer-to-peer indoor navigation with mobile visual slam, in Proceedings of the IEEE INFOCOM, 29 April–2 May 2019

    Google Scholar 

  10. E. Dong, J. Liang, Z. Wang, J. Xu, L. Shangguan, Q. Ma, Z. Yang, Improving the applicability of visual peer-to-peer navigation with crowdsourcing, in Proceedings of the IEEE ICPADS, Dec 2–4, 2020

    Google Scholar 

  11. L. Dong, J. Xu, G. Chi, D. Li, X. Zhang, J. Li, Q. Ma, Z. Yang, Enabling surveillance cameras to navigate, in Proceedings of the IEEE ICCCN, 3–6 August 2020

    Google Scholar 

  12. Z. Yang, C. Wu, Y. Liu, Locating in fingerprint space: wireless indoor localization with little human intervention, in Proceedings of the ACM Mobicom, 2012, pp. 269–280

    Google Scholar 

  13. G. Shen, Z. Chen, P. Zhang, T. Moscibroda, Y. Zhang, Walkiemarkie: indoor pathway mapping made easy, in USENIX NSDI, 2013, pp. 85–98

    Google Scholar 

  14. A. Rai, K.K. Chintalapudi, V.N. Padmanabhan, R. Sen, Zee: zero-effort crowdsourcing for indoor localization, in Proceedings of the ACM Mobicom, 2012, pp. 293–304

    Google Scholar 

  15. C. Wu, Z. Yang, Y. Liu, Smartphones based crowdsourcing for indoor localization. IEEE Trans. Mob. Comput. 14(2), 444–457 (2014)

    Article  Google Scholar 

  16. D. Lymberopoulos, J. Liu, The microsoft indoor localization competition: experiences and lessons learned. IEEE Signal Process. Mag. 34(5), 125–140 (2017)

    Article  Google Scholar 

  17. https://www.imoo.com/

  18. J. Xu, Z. Yang, H. Chen, Y. Liu, X. Zhou, J. Li, N. Lane, Embracing spatial awareness for reliable WiFi-based indoor location systems, in 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), (IEEE, Piscataway, 2018), pp. 281–289

    Chapter  Google Scholar 

  19. M. Abbas, M. Elhamshary, H. Rizk, M. Torki, M. Youssef, Wideep: WiFi-based accurate and robust indoor localization system using deep learning, in 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom), (IEEE, Piscataway, 2019), pp. 1–10

    Google Scholar 

  20. C. Wu, Z. Yang, Y. Liu, W. Xi, Will: wireless indoor localization without site survey. IEEE Trans Parallel Distrib. Syst. 24(4), 839–848 (2012)

    Google Scholar 

  21. H. Xu, Z. Yang, Z. Zhou, L. Shangguan, K. Yi, Y. Liu, Enhancing WiFi-based localization with visual clues, in Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp. 963–974

    Google Scholar 

  22. X. Chen, H. Li, C. Zhou, X. Liu, D. Wu, G. Dudek, Fido: ubiquitous fine-grained WiFi-based localization for unlabelled users via domain adaptation, in Proceedings of the Web Conference 2020, 2020, pp. 23–33

    Google Scholar 

  23. C. Wu, Z. Yang, C. Xiao, C. Yang, Y. Liu, M. Liu, Static power of mobile devices: self-updating radio maps for wireless indoor localization, in 2015 IEEE Conference on Computer Communications (INFOCOM), (IEEE, Piscataway, 2015), pp. 2497–2505

    Chapter  Google Scholar 

  24. J. Xu, H. Chen, K. Qian, E. Dong, M. Sun, C. Wu, L. Zhang, Z. Yang, iVR: integrated vision and radio localization with zero human effort. Proc. ACM IMWUT 3(3), 1–22 (2019)

    Google Scholar 

  25. Z. Yang, C. Wu, Z. Zhou, X. Zhang, X. Wang, Y. Liu, Mobility increases localizability: a survey on wireless indoor localization using inertial sensors. ACM Comput. Surv. 47(3), 1–34 (2015)

    Article  Google Scholar 

  26. Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, V. Lempitsky, Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    MathSciNet  Google Scholar 

  27. W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan, H. Xue, C. Song, X. Ma, D. Koutsonikolas et al., Towards environment independent device free human activity recognition, in Proceedings of the ACM Mobicom, 2018, pp. 289–304

    Google Scholar 

  28. Z.-H. Zhou, M. Li, Semi-supervised regression with co-training. Int. J. Comput. Artif. Intell. 5, 908–913 (2005)

    Google Scholar 

  29. D.-D. Chen, W. Wang, Z.-H. Zhou, Tri-net for semi-supervised deep learning, in Proceedings of Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018, pp. 2014–2020

    Google Scholar 

  30. M. Zhao, S. Yue, D. Katabi, T.S. Jaakkola, M.T. Bianchi, Learning sleep stages from radio signals: a conditional adversarial architecture, in International Conference on Machine Learning, 2017

    Google Scholar 

  31. J.-W. Jang, S.-N. Hong, Indoor localization with WiFi fingerprinting using convolutional neural network, in Proceeding of the IEEE ICUFN, 2018

    Google Scholar 

  32. X. Song, X. Fan, C. Xiang, Q. Ye, L. Liu, Z. Wang, X. He, N. Yang, G. Fang, A novel convolutional neural network based indoor localization framework with WiFi fingerprinting. IEEE Access 7, 110698–110709 (2019)

    Article  Google Scholar 

  33. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems, 2012, pp. 1097–1105

    Google Scholar 

  34. J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, et al., Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    Article  Google Scholar 

  35. Z. Sun, Y. Chen, J. Qi, J. Liu, Adaptive localization through transfer learning in indoor Wi-Fi environment, in Seventh International Conference on Machine Learning and Applications, (IEEE, Piscataway, 2008)

    Google Scholar 

  36. L. van der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  37. M.-F. Balcan, A. Blum, K. Yang, Co-training and expansion: towards bridging theory and practice, in Advances in Neural Information Processing Systems, 2005, pp. 89–96

    Google Scholar 

  38. W. Wang, Z.-H. Zhou, A new analysis of co-training, in ICML, 2010

    Google Scholar 

  39. A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in Proceedings of the Eleventh Annual Conference on Computational Learning Theory, 1998, pp. 92–100

    Google Scholar 

  40. M.-F. Balcan, A. Blum, A discriminative model for semi-supervised learning. J. ACM 57(3), 1–46 (2010)

    Article  MathSciNet  Google Scholar 

  41. K. Saito, Y. Ushiku, T. Harada, Asymmetric tri-training for unsupervised domain adaptation, arXiv preprint arXiv:1702.08400, 2017

    Google Scholar 

  42. Y. Shu, Y. Huang, J. Zhang, P. Coué, P. Cheng, J. Chen, K.G. Shin, Gradient-based fingerprinting for indoor localization and tracking. IEEE Trans. Ind. Electron. 63(4), 24242433 (2015)

    Google Scholar 

  43. S. He, B. Ji, S.-H.G. Chan, Chameleon: survey-free updating of a fingerprint database for indoor localization. IEEE Pervasive Comput 15(4), 66–75 (2016)

    Article  Google Scholar 

  44. Y. Chen, Q. Yang, J. Yin, X. Chai, Power-efficient access-point selection for indoor location estimation. IEEE Trans. Knowl. Data Eng. 18(7), 877–888 (2006)

    Article  Google Scholar 

  45. S. He, S.-H.G. Chan, Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons. IEEE Commun. Surv. Tutor 18(1), 466–490 (2015)

    Article  Google Scholar 

  46. L. Li, G. Shen, C. Zhao, T. Moscibroda, J.-H. Lin, F. Zhao, Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service, in Proceedings of the ACM Mobicom, 2014, pp. 459–470

    Google Scholar 

  47. P. Mirowski, P. Whiting, H. Steck, R. Palaniappan, M. MacDonald, D. Hartmann, T.K. Ho, Probability kernel regression for WiFi localisation. J. Locat. Based Serv. 6(2), 81100 (2012)

    Google Scholar 

  48. S.J. Pan, V.W. Zheng, Q. Yang, D.H. Hu, Transfer learning for WiFi-based indoor localization, in AAAI, vol. 6, 2008

    Google Scholar 

  49. H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, R.R. Choudhury, No need to war-drive: unsupervised indoor localization, in Proceedings of the ACM Mobisys, 2012

    Google Scholar 

  50. S. He, W. Lin, S.-H.G. Chan, Indoor localization and automatic fingerprint update with altered AP signals. IEEE Trans. Mob. Comput. 16(7), 1897–1910 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Yang, Z. (2024). Automatic Fingerprint Database Update. In: Location, Localization, and Localizability. Springer, Singapore. https://doi.org/10.1007/978-981-97-3176-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-3176-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-3175-6

  • Online ISBN: 978-981-97-3176-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics