Nothing Special   »   [go: up one dir, main page]

Skip to main content

Counting on Rainbow k-Connections

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2024)

Abstract

For an undirected graph imbued with an edge coloring, a rainbow path (resp. proper path) between a pair of vertices corresponds to a simple path in which no two edges (resp. no two adjacent edges) are of the same color. In this context, we refer to such an edge coloring as a rainbow k-connected w-coloring (resp. k-proper connected w-coloring) if at most w colors are used to ensure the existence of at least k internally vertex disjoint rainbow paths (resp. k internally vertex disjoint proper paths) between all pairs of vertices. At present, while there have been extensive efforts to characterize the complexity of finding rainbow 1-connected colorings, we remark that very little appears to known for cases where \(k \in \mathbb {N}_{>1}\).

In this work, in part answering a question of (Ducoffe et al.; Discrete Appl. Math. 281; 2020), we first show that the problems of counting rainbow k-connected w-colorings and counting k-proper connected w-colorings are both linear time treewidth Fixed Parameter Tractable (FPT) for every \(\left( k,w\right) \in \mathbb {N}_{>0}^2\). Subsequently, and in the other direction, we extend prior NP-completeness results for deciding the existence of a rainbow 1-connected w-coloring for every \(w \in \mathbb {N}_{>1}\), in particular, showing that the problem remains NP-complete for every \(\left( k,w\right) \in \mathbb {N}_{>0} \times \mathbb {N}_{>1}\). This yields as a corollary that no Fully Polynomial-time Randomized Approximation Scheme (FPRAS) can exist for approximately counting such colorings in any of these cases (unless \(NP = RP\)). Next, concerning counting hardness, we give the first \(\#P\)-completeness result we are aware of for rainbow connected colorings, proving that counting rainbow k-connected 2-colorings is \(\#P\)-complete for every \(k \in \mathbb {N}_{>0}\).

This work was supported by a Grant-in-Aid for JSPS Research Fellow (18F18117 to R. D. Barish), and by JSPS Kakenhi grants \(\{\)20K21827, 20H05967, 21H04871, 21H05052 23H03345, 23K18501\(\}\) to T. Shibuya.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ananth, P., Nasre, M., Sarpatwar, K.K.: Rainbow connectivity: hardness and tractability. In: Proceedings of the 31st FSTTCS, pp. 241–251 (2011)

    Google Scholar 

  2. Andrews, E., Lumduanhom, C., Laforge, E., Zhang, P.: On proper-path colorings in graphs. J. Comb. Math. Comb. Comput. 97, 189–207 (2016)

    MathSciNet  Google Scholar 

  3. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MathSciNet  Google Scholar 

  4. Barrett, C., et al.: Predecessor existence problems for finite discrete dynamical systems. Theoret. Comput. Sci. 386(1–2), 3–37 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, 1st edn. Macmillan Press, New York (1976)

    Book  Google Scholar 

  6. Borozan, V., et al.: Proper connection of graphs. Discrete Math. 312(17), 2550–2560 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and algorithms for rainbow connection. J. Comb. Optim. 21(3), 330–347 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in graphs. Math. Bohem. 133(1), 85–98 (2008)

    Article  MathSciNet  Google Scholar 

  9. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: The rainbow connectivity of a graph. Networks 54(2), 75–81 (2009)

    Article  MathSciNet  Google Scholar 

  10. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  Google Scholar 

  11. Courcelle, B.: The monadic second-order logic of graphs XII: planar graphs and planar maps. Theoret. Comput. Sci. 237(1–2), 1–32 (2000)

    Article  MathSciNet  Google Scholar 

  12. Courcelle, B.: Graph structure and monadic second-order logic: language theoretical aspects. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 1–13. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_1

    Chapter  Google Scholar 

  13. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Appl. Math. 108(1–2), 23–52 (2001)

    Article  MathSciNet  Google Scholar 

  14. Diestel, R.: Graph Theory, 5th edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53622-3

    Book  Google Scholar 

  15. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, 1st edn. Springer, New York (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  Google Scholar 

  16. Ducoffe, G., Marinescu-Ghemeci, R., Popa, A.: On the (di)graphs with (directed) proper connection number two. Discrete Appl. Math. 281, 203–215 (2020)

    Article  MathSciNet  Google Scholar 

  17. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: The relative complexity of approximate counting problems. Algorithmica 38(3), 471–500 (2004)

    Article  MathSciNet  Google Scholar 

  18. Eiben, E., Ganian, R., Lauri, J.: On the complexity of rainbow coloring problems. Discrete Appl. Math. 246, 38–48 (2018)

    Article  MathSciNet  Google Scholar 

  19. Karp, R.M., Luby, M.: Monte-Carlo algorithms for enumeration and reliability problems. In: Proceedings of the 24th FOCS, pp. 56–64 (1983)

    Google Scholar 

  20. Li, X., Magnant, C.: Properly colored notions of connectivity – a dynamic survey. Theory Appl. Graphs (1), 1–16 (2015)

    Google Scholar 

  21. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion routing. IEEE J. Sel. Area. Commun. 16(4), 482–494 (1998)

    Article  Google Scholar 

  22. Zuckerman, D.: On unapproximable versions of NP-complete problems. SIAM J. Comput. 25(6), 1293–1304 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Barish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barish, R.D., Shibuya, T. (2024). Counting on Rainbow k-Connections. In: Chen, X., Li, B. (eds) Theory and Applications of Models of Computation. TAMC 2024. Lecture Notes in Computer Science, vol 14637. Springer, Singapore. https://doi.org/10.1007/978-981-97-2340-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2340-9_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2339-3

  • Online ISBN: 978-981-97-2340-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics