Nothing Special   »   [go: up one dir, main page]

Skip to main content

Time Series Model Interpretation via Temporal Feature Sampling

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Model interpretation methods play a critical role in enhancing the applicability of time series neural networks in high-risk domains. However, existing model interpretation methods, primarily designed for static data like images, do not yield satisfactory results while dealing with time series data. Although some studies have explored the time dimension and evaluated feature importance at each time point through feature removal, they neglect the potential correlations among multiple features that impact the model’s predictive outcomes. To address this limitation, we introduce the concept of Shapley value into the process of time series model interpretation and propose the TFS (Temporal Feature Sampling) algorithm. This algorithm calculates the importance scores of feature subsets, which include the removed features, during the model interpretation process. Additionally, it models the distribution of features by sampling within the time series data. We conducted comparative experiments between TFS and several baseline methods on two synthetic datasets and one real-world dataset, and the experimental results confirmed the efficiency and performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuan, Y., Zhou, X., Pan, S., Zhu, Q., Song, Z., Guo, L.: A relation-specific attention network for joint entity and relation extraction. In: IJCAI. vol. 2020, pp. 4054–4060 (2020)

    Google Scholar 

  2. Ho, N.H., Yang, H.J., Kim, S.H., Lee, G.: Multimodal approach of speech emotion recognition using multi-level multi-head fusion attention-based recurrent neural network. IEEE Access 8, 61672–61686 (2020)

    Article  Google Scholar 

  3. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730 (2015)

    Google Scholar 

  4. Zhang, Z., Xie, Y., Xing, F., McGough, M., Yang, L.: MDNet: a semantically and visually interpretable medical image diagnosis network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6428–6436 (2017)

    Google Scholar 

  5. Wang, D., Quek, C., Ng, G.S.: Bank failure prediction using an accurate and interpretable neural fuzzy inference system. AI Commun. 29(4), 477–495 (2016)

    Article  MathSciNet  Google Scholar 

  6. Kim, J., Rohrbach, A., Darrell, T., Canny, J., Akata, Z.: Textual explanations for self-driving vehicles. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 577–593. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_35

    Chapter  Google Scholar 

  7. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: a review of machine learning interpretability methods. Entropy 23(1), 18 (2020)

    Article  Google Scholar 

  8. Ismail, A.A., Gunady, M., Corrada Bravo, H., Feizi, S.: Benchmarking deep learning interpretability in time series predictions. Adv. Neural. Inf. Process. Syst. 33, 6441–6452 (2020)

    Google Scholar 

  9. Serrano, S., Smith, N.A.: Is attention interpretable? arXiv preprint arXiv:1906.03731 (2019)

  10. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  11. Tonekaboni, S., Joshi, S., Campbell, K., Duvenaud, D.K., Goldenberg, A.: What went wrong and when? Instance-wise feature importance for time-series black-box models. Adv. Neural. Inf. Process. Syst. 33, 799–809 (2020)

    Google Scholar 

  12. Petsiuk, V., Das, A., Saenko, K.: Rise: randomized input sampling for explanation of black-box models. arXiv preprint arXiv:1806.07421 (2018)

  13. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  14. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  15. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  16. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: International Conference on Machine Learning, pp. 3145–3153. PMLR (2017)

    Google Scholar 

  17. Erion, G., Janizek, J.D., Sturmfels, P., Lundberg, S.M., Lee, S.I.: Learning explainable models using attribution priors (2019)

    Google Scholar 

  18. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances In Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  19. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  20. Kindermans, P.J., et al.: Learning how to explain neural networks: Patternnet and pattern attribution. arXiv preprint arXiv:1705.05598 (2017)

  21. Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by excitation backprop. Int. J. Comput. Vision 126(10), 1084–1102 (2018)

    Article  Google Scholar 

  22. Ismail, A.A., Gunady, M., Pessoa, L., Corrada Bravo, H., Feizi, S.: Input-cell attention reduces vanishing saliency of recurrent neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  23. Bento, J., Saleiro, P., Cruz, A.F., Figueiredo, M.A., Bizarro, P.: Timeshap: explaining recurrent models through sequence perturbations. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2565–2573 (2021)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  25. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: Retain: an interpretable predictive model for healthcare using reverse time attention mechanism. In: Advances In Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  26. Song, H., Rajan, D., Thiagarajan, J., Spanias, A.: Attend and diagnose: clinical time series analysis using attention models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  27. Guo, T., Lin, T., Lu, Y.: An interpretable LSTM neural network for autoregressive exogenous model. arXiv preprint arXiv:1804.05251 (2018)

  28. Suresh, H., Hunt, N., Johnson, A., Celi, L.A., Szolovits, P., Ghassemi, M.: Clinical intervention prediction and understanding using deep networks. arXiv preprint arXiv:1705.08498 (2017)

  29. Crabbé, J., Van Der Schaar, M.: Explaining time series predictions with dynamic masks. In: International Conference on Machine Learning, pp. 2166–2177. PMLR (2021)

    Google Scholar 

  30. Covert, I.C., Lundberg, S., Lee, S.I.: Explaining by removing: a unified framework for model explanation. J. Mach. Learn. Res. 22(1), 9477–9566 (2021)

    MathSciNet  Google Scholar 

  31. Shapley, L.S., et al.: A value for n-person games (1953)

    Google Scholar 

  32. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41, 647–665 (2014)

    Article  Google Scholar 

  33. Schlegel, U., Arnout, H., El-Assady, M., Oelke, D., Keim, D.A.: Towards a rigorous evaluation of XAI methods on time series. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 4197–4201. IEEE (2019)

    Google Scholar 

  34. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3(1), 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  35. Kokhlikyan, N., et al.: Captum: a unified and generic model interpretability library for PyTorch. arXiv preprint arXiv:2009.07896 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Li, X., Cui, Y. (2024). Time Series Model Interpretation via Temporal Feature Sampling. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14331. Springer, Singapore. https://doi.org/10.1007/978-981-97-2303-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2303-4_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2302-7

  • Online ISBN: 978-981-97-2303-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics