Nothing Special   »   [go: up one dir, main page]

Skip to main content

SCS: A Structural Similarity Measure for Graph Clustering Based on Cycles and Paths

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14331))

  • 125 Accesses

Abstract

With the continuous development of business intelligence and scientific exploration, graphs have been extensively applied to various fields. Graph clustering has emerged as a crucial task for mining the structure and function of complex networks. However, existing clustering algorithms often overly emphasize the density and degree of vertices in the graph while neglecting the correlations and structural characteristics among vertices, resulting in poor performance when clustering graphs. In this paper, we propose a novel method called Structural and Cyclic Similarity (SCS) for structural graph clustering, aiming to improve the quality of clustering. Our method utilizes short-length cycles and paths, which are common graph motifs, to comprehensively capture the neighborhoods and graph motifs of connected vertices. This enables us to quantify the similarity between vertices effectively. The SCS is then applied to structural graph clustering algorithms, thereby improving the clustering quality. To efficiently compute the SCS, we give an algorithm of subgraph counting, which rapidly counts all short-length cycles in the graph. Experimental results conducted on six real-world datasets demonstrate that the clustering algorithm based on SCS outperforms other similarity measures in terms of clustering quality and can improve the effectiveness of graph clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles (1998)

    Google Scholar 

  2. Augsten, N., BHlen, M.H.: Similarity joins in relational database systems. Synth. Lect. Data Manage. 5(5), 1–124 (2013)

    Google Scholar 

  3. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient algorithms for large-scale local triangle counting. ACM Trans. Knowl. Disc. Data. 4, 1–8 (2010)

    Article  Google Scholar 

  4. Chang, L., Wei, L., Lin, X., Lu, Q., Zhang, W.: pSCAN: fast and exact structural graph clustering. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE) (2016)

    Google Scholar 

  5. Chen, J., Hsu, W., Lee, M.L., Ng, S.K.: Nemofinder: dissecting genome-wide protein-protein interactions with Meso-scale network motifs. In: Twelfth ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2006)

    Google Scholar 

  6. Ding, C., He, X., Zha, H., Ming, G., Simon, H.D.: A min-max cut algorithm for graph partitioning and data clustering. In: Proceedings 2001 IEEE International Conference on Data Mining (2001)

    Google Scholar 

  7. Feng, H.B.: Density-based shrinkage for revealing hierarchical and overlapping community structure in networks. Statist. Mech. App. Phys. A. 390, 2160–2171 (2011)

    Article  Google Scholar 

  8. Feng, Z., Xu, X., Yuruk, N., Schweiger, T.A.J.: A novel similarity-based modularity function for graph partitioning (2007)

    Google Scholar 

  9. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  10. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 92–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71681-5_7

    Chapter  Google Scholar 

  11. Guimerà, R., Nunes Amaral, L.A.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005)

    Article  Google Scholar 

  12. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity methods: part i. ACM SIGMOD Record 31(2), 40–45 (2002)

    Article  Google Scholar 

  13. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  14. Kim, M.S., Han, J.: A particle-and-density based evolutionary clustering method for dynamic networks. Proc. VLDB Endow. 2(1), 622–633 (2009)

    Article  Google Scholar 

  15. Kutzkov, K., Pagh, R.: On the streaming complexity of computing local clustering coefficients. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (2013)

    Google Scholar 

  16. Latapy, M.: Main-memory triangle computations for very large (sparse (power-law)) graphs. Theoret. Comput. Sci. 407, 458–473 (2008)

    Article  MathSciNet  Google Scholar 

  17. Lim, S., Ryu, S., Kwon, S., Jung, K., Lee, J.G.: LinkSCAN*: overlapping community detection using the link-space transformation. In: IEEE International Conference on Data Engineering (2014)

    Google Scholar 

  18. Liu, J., Chi, W., Danilevsky, M., Han, J.: Large-scale spectral clustering on graphs. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (2013)

    Google Scholar 

  19. Lu, W., Xiao, Y., Shao, B., Wang, H.: How to partition a billion-node graph. In: IEEE International Conference on Data Engineering (2014)

    Google Scholar 

  20. Milo, R., Shen-Orr, S., Ltzkovitz, S., Kashtan, N., Alan, U.: Network motifs: Simple building blocks of complex networks (2011)

    Google Scholar 

  21. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2 Pt 2), 026113 (2004)

    Article  Google Scholar 

  22. Pinar, A., Seshadhri, C., Vishal, V.: Escape: efficiently counting all 5-vertex subgraphs. In: The Web Conference (2017)

    Google Scholar 

  23. Shi, J., Malik, J.M.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  24. Shiokawa, H., Fujiwara, Y., Onizuka, M.: Fast algorithm for modularity-based graph clustering. In: National Conference on Artificial Intelligence (2013)

    Google Scholar 

  25. Shiokawa, H., Fujiwara, Y., Onizuka, M.: Scan++: efficient algorithm for finding clusters, hubs and outliers on large-scale graphs. VLDB Endow. 8, 1178–1189 (2015)

    Article  Google Scholar 

  26. Singh, M.: SPICi: a fast clustering algorithm for large biological networks. Bioinformatics 26(8), 1105–11 (2010)

    Article  Google Scholar 

  27. Sun, H., Huang, J., Han, J., Deng, H., Sun, Y.: Shrink: a structural clustering algorithm for detecting hierarchical communities in networks. In: ACM International Conference on Information & Knowledge Management (2010)

    Google Scholar 

  28. Sun, H., Huang, J., Han, J., Deng, H., Zhao, P., Feng, B.: gSkeletonClu: density-based network clustering via structure-connected tree division or agglomeration (2010)

    Google Scholar 

  29. Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., Tsiarli, M.: Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2013)

    Google Scholar 

  30. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications (1994)

    Google Scholar 

  31. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: Scan: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007)

    Google Scholar 

  32. Zhao, P.: gSparsify: Graph motif based sparsification for graph clustering. ACM (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Wang, L., Zhang, Z., Qin, X. (2024). SCS: A Structural Similarity Measure for Graph Clustering Based on Cycles and Paths. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14331. Springer, Singapore. https://doi.org/10.1007/978-981-97-2303-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2303-4_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2302-7

  • Online ISBN: 978-981-97-2303-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics