Nothing Special   »   [go: up one dir, main page]

Skip to main content

Difference Vector Angle Dominance with an Angle Threshold for Expensive Multi-objective Optimization

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2061))

  • 172 Accesses

Abstract

For the latest two years, relation classification-based surrogate-assisted algorithms show good potential for solving expensive multi-objective optimization problems (EMOPs). In this category of methods, the used dominance relation that is vital for building training dataset and selecting promising solutions to reduce expensive real function evaluations (FEs). However, the existing studies are still at the initial stage and lack specific research on the dominance relation. This paper proposes a novel dominance relation called Difference Vector Angle Dominance with an angle threshold for EMOPs (called as DVAD-\(\varphi \)). The proposed DVAD-\(\varphi \) has adaptive selection pressure and considers the convergence and diversity of solutions when picking out superior solutions, which makes it beneficial to pick out promising solutions for expensive real FEs and reduce expensive real FEs. To be specific, we firstly give the definition of DVAD-\(\varphi \) that measures the superiority from one solution to another solution, where the angle threshold \(\varphi \) controls the selection pressure. Then, we propose an adaptive determination strategy of angle threshold based on bisection to set proper pressure for picking out promising solutions for expensive real FEs. Experiments have been conducted on 7 test functions from one benchmark set. The experimental results have verified the effectiveness of DVAD-\(\varphi \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bosman, P., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188 (2003). https://doi.org/10.1109/TEVC.2003.810761

    Article  Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  3. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002 (Cat. No.02TH8600), vol. 1, pp. 825–830 (2002). https://doi.org/10.1109/CEC.2002.1007032

  4. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  5. Farzaneh, M., Mahdian Toroghi, R.: Music generation using an interactive evolutionary algorithm. In: Djeddi, C., Jamil, A., Siddiqi, I. (eds.) MedPRAI 2019. CCIS, vol. 1144, pp. 207–217. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37548-5_16

    Chapter  Google Scholar 

  6. Guo, D., Wang, X., Gao, K., Jin, Y., Ding, J., Chai, T.: Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network. IEEE Trans. Syst. Man Cybern. Syst. 52(4), 2084–2097 (2022). https://doi.org/10.1109/TSMC.2020.3044418

    Article  Google Scholar 

  7. Hao, H., Zhou, A., Qian, H., Zhang, H.: Expensive multiobjective optimization by relation learning and prediction. IEEE Trans. Evol. Comput. 26(5), 1157–1170 (2022). https://doi.org/10.1109/TEVC.2022.3152582

    Article  Google Scholar 

  8. Jiang, M., Wang, Z., Qiu, L., Guo, S., Gao, X., Tan, K.C.: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning. IEEE Trans. Cybern. 51(7), 3417–3428 (2021). https://doi.org/10.1109/TCYB.2020.2989465

    Article  Google Scholar 

  9. Jin, Y., Wang, H., Chugh, T., Guo, D., Miettinen, K.: Data-driven evolutionary optimization: an overview and case studies. IEEE Trans. Evol. Comput. 23(3), 442–458 (2019). https://doi.org/10.1109/TEVC.2018.2869001

    Article  Google Scholar 

  10. Knowles, J.: Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006). https://doi.org/10.1109/TEVC.2005.851274

    Article  Google Scholar 

  11. Lin, X., Zhang, Q., Kwong, S.: A decomposition based multiobjective evolutionary algorithm with classification. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3292–3299 (2016). https://doi.org/10.1109/CEC.2016.7744206

  12. Liu, S., Li, J., Lin, Q., Tian, Y., Tan, K.C.: Learning to accelerate evolutionary search for large-scale multiobjective optimization. IEEE Trans. Evol. Comput. 27(1), 67–81 (2023). https://doi.org/10.1109/TEVC.2022.3155593

    Article  Google Scholar 

  13. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)

    Article  Google Scholar 

  14. Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization. IEEE Trans. Evol. Comput. 23(1), 74–88 (2019). https://doi.org/10.1109/TEVC.2018.2802784

    Article  Google Scholar 

  15. Shiratori, R., Nakata, M., Hayashi, K., Baba, T.: Particle swarm optimization of silicon photonic crystal waveguide transition. Opt. Lett. 46(8), 1904–1907 (2021)

    Article  Google Scholar 

  16. Song, Z., Wang, H., He, C., Jin, Y.: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization. IEEE Trans. Evol. Comput. 25(6), 1013–1027 (2021). https://doi.org/10.1109/TEVC.2021.3073648

    Article  Google Scholar 

  17. Sonoda, T., Nakata, M.: Multiple classifiers-assisted evolutionary algorithm based on decomposition for high-dimensional multiobjective problems. IEEE Trans. Evol. Comput. 26(6), 1581–1595 (2022). https://doi.org/10.1109/TEVC.2022.3159000

    Article  Google Scholar 

  18. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  19. Wilcoxon, F.: Individual Comparisons by Ranking Methods. Springer, Cham (1992)

    Book  Google Scholar 

  20. Xiao, J., Liang, J., Zhao, K., Yang, Z., Yu, M.: Multi-parameters optimization for electromagnetic acoustic transducers using surrogate-assisted particle swarm optimizer. Mech. Syst. Signal Process. 152, 107337 (2021). https://doi.org/10.1016/j.ymssp.2020.107337

    Article  Google Scholar 

  21. Yu, G., Ma, L., Jin, Y., Du, W., Liu, Q., Zhang, H.: A survey on knee-oriented multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 26(6), 1452–1472 (2022). https://doi.org/10.1109/TEVC.2022.3144880

    Article  Google Scholar 

  22. Yu, M., Li, X., Liang, J.: A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization. Struct. Multidiscip. Optim. 61, 711–729 (2020)

    Article  Google Scholar 

  23. Yuan, Y., Banzhaf, W.: Expensive multiobjective evolutionary optimization assisted by dominance prediction. IEEE Trans. Evol. Comput. 26(1), 159–173 (2022). https://doi.org/10.1109/TEVC.2021.3098257

    Article  Google Scholar 

  24. Zhang, J., Zhou, A., Zhang, G.: A classification and pareto domination based multiobjective evolutionary algorithm. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2883–2890 (2015). https://doi.org/10.1109/CEC.2015.7257247

  25. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2010). https://doi.org/10.1109/TEVC.2009.2033671

    Article  Google Scholar 

  26. Zhu, S., Xu, L., Goodman, E.D., Lu, Z.: A new many-objective evolutionary algorithm based on generalized pareto dominance. IEEE Trans. Cybern. 52(8), 7776–7790 (2022). https://doi.org/10.1109/TCYB.2021.3051078

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported in part by the NSFC Research Program (61906010, 62276010) and R &D Program of Beijing Municipal Education Commission (KM202010005032, KZ202210005009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuicui Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, C., Chen, J. (2024). Difference Vector Angle Dominance with an Angle Threshold for Expensive Multi-objective Optimization. In: Pan, L., Wang, Y., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2023. Communications in Computer and Information Science, vol 2061. Springer, Singapore. https://doi.org/10.1007/978-981-97-2272-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2272-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2271-6

  • Online ISBN: 978-981-97-2272-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics