Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Population Graph Neural Network Based on Functional Connectivity for Mental Disorders Detection

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14648))

Included in the following conference series:

  • 541 Accesses

Abstract

Accurate and rapid clinical confirmation of psychiatric disorders based on imaging, symptom and scale data has long been difficult. Graph neural networks have received increasing attention in recent years due to their advantages in processing unstructured relational data, especially functional magnetic resonance imaging data. However, all existing methods have certain drawbacks. Individual graph methods are able to provide important biomarkers based on functional connectivity modelling, but their accuracy is low. Population graph methods, which improve the prediction performance by considering the similarity between patients, lack clinical interpretability. In this study, we propose a functional connectivity-based population graph (FCP-GNN) approach that possesses excellent classification capabilities while also providing significant biomarkers for clinical reference. The proposed method is divided into two phases. In the first phase, brain region features are learned hemispherically and used to identify biomarkers through a local-global dual-channel pooling layer. In the second phase, a heterogeneous population map is constructed based on gender. The feature information of same-sex and opposite-sex neighbours is learned separately using a hierarchical feature aggregation module to obtain the final embedding representation. The experiment results show that FCP-GNN achieves state-of-the-art performance in classification prediction work on two public datasets.

This work was supported by Ningbo Municipal Public Welfare Technology Research Project(2023S023) and Natural Science Foundation of Ningbo (2023J114).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almuqhim, F., Saeed, F.: ASD-Saenet: a sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using FMRI data. Front. Comput. Neurosci. 15, 654315 (2021)

    Article  Google Scholar 

  2. Bellani, M., Baiano, M., Brambilla, P.: Brain anatomy of major depression ii. focus on amygdala. Epidemiol. Psychiatr. Sci. 20(1), 33–36 (2011)

    Article  Google Scholar 

  3. Cao, M., Yang, M., Qin, C., et al.: Using deepGCN to identify the autism spectrum disorder from multi-site resting-state data. Biomed. Signal Process. Control 70, 103015 (2021)

    Article  Google Scholar 

  4. Craddock, C., Sikka, S., et al.: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). Front. Neuroinform. 42(10.3389) (2013)

    Google Scholar 

  5. Desikan, R.S., Ségonne, F., Fischl, B., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into GYRAL based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

  6. Di Martino, A., Yan, C.G., Li, Q., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatr. 19(6), 659–667 (2014)

    Article  Google Scholar 

  7. Gazzaniga, M.S.: Forty-five years of split-brain research and still going strong. Nat. Rev. Neurosci. 6(8), 653–659 (2005)

    Article  Google Scholar 

  8. Huang, Y., Chung, A.C.S.: Edge-variational graph convolutional networks for uncertainty-aware disease prediction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 562–572. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_55

    Chapter  Google Scholar 

  9. Ingalhalikar, M., Smith, A., Parker, D., et al.: Sex differences in the structural connectome of the human brain. Proc. Natl. Acad. Sci. 111(2), 823–828 (2014)

    Article  Google Scholar 

  10. Jiang, H., Cao, P., Xu, M., Yang, J., Zaiane, O.: Hi-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Comput. Biol. Med. 127, 104096 (2020)

    Article  Google Scholar 

  11. Kim, D., Lee, J.Y., Jeong, B.C., et al.: Overconnectivity of the right Heschl’s and inferior temporal gyrus correlates with symptom severity in preschoolers with autism spectrum disorder. Autism Res. 14(11), 2314–2329 (2021)

    Article  Google Scholar 

  12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  13. Korgaonkar, M.S., Fornito, A., Williams, L.M., Grieve, S.M.: Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol. Psychiat. 76(7), 567–574 (2014)

    Article  Google Scholar 

  14. Li, D., Karnath, H.O., Xu, X.: Candidate biomarkers in children with autism spectrum disorder: a review of MRI studies. Neurosci. Bull. 33, 219–237 (2017)

    Article  Google Scholar 

  15. Li, X., Zhou, Y., Dvornek, N., Zhang, M., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  16. Liang, Y., Xu, G.: Multi-level functional connectivity fusion classification framework for brain disease diagnosis. IEEE J. Biomed. Health Inform. 26(6), 2714–2725 (2022)

    Article  MathSciNet  Google Scholar 

  17. MacQueen, G., Frodl, T.: The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol. Psychiatry 16(3), 252–264 (2011)

    Article  Google Scholar 

  18. Monk, C.S., Peltier, S.J., Wiggins, J.L., et al.: Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 47(2), 764–772 (2009)

    Article  Google Scholar 

  19. Pan, J., Lin, H., Dong, Y., Wang, Y., Ji, Y.: MAMF-GCN: multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder. Comput. Biol. Med. 148, 105823 (2022)

    Article  Google Scholar 

  20. Papakostas, G.I.: Managing partial response or nonresponse: switching, augmentation, and combination strategies for major depressive disorder. J. Clin. Psychiatry 70(suppl 6), 11183 (2009)

    Article  Google Scholar 

  21. Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Moreno, R.G., Glocker, B., Rueckert, D.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  22. Rakhimberdina, Z., Murata, T.: Linear graph convolutional model for diagnosing brain disorders. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds.) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol. 882, pp. 815–826. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36683-4_65

  23. Shi, Y., Huang, Z., et al.: Masked label prediction: Unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509 (2020)

  24. Vigo, D., Thornicroft, G., Atun, R.: Estimating the true global burden of mental illness. The Lancet Psychiatry 3(2), 171–178 (2016)

    Article  Google Scholar 

  25. Wen, G., Cao, P., Bao, H., et al.: MVS-GCN: a prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Comput. Biol. Med. 142, 105239 (2022)

    Article  Google Scholar 

  26. Yahata, N., Morimoto, J., Hashimoto, R., Lisi, G., et al.: A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat. Commun. 7(1), 11254 (2016)

    Article  Google Scholar 

  27. Yan, C.G., Chen, X., Li, L., et al.: Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl. Acad. Sci. 116(18), 9078–9083 (2019)

    Article  Google Scholar 

  28. Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F.: DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14, 339–351 (2016)

    Article  Google Scholar 

  29. Zhang, H., et al.: Classification of brain disorders in RS-fMRI via local-to-global graph neural networks. IEEE Trans. Med. Imaging 42(2), 444–455 (2023)

    Article  Google Scholar 

  30. Zheng, S., Zhu, Z., Liu, Z., et al.: Multi-modal graph learning for disease prediction. IEEE Trans. Med. Imaging 41(9), 2207–2216 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihong Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, Y., Peng, S., Li, Y., Gao, L., Dong, Y. (2024). A Novel Population Graph Neural Network Based on Functional Connectivity for Mental Disorders Detection. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14648. Springer, Singapore. https://doi.org/10.1007/978-981-97-2238-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2238-9_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2240-2

  • Online ISBN: 978-981-97-2238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics