Nothing Special   »   [go: up one dir, main page]

Skip to main content

Graph Structure Learning-Based Compression Method for Convolutional Neural Networks

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14488))

  • 382 Accesses

Abstract

Convolutional neural networks (CNNs) have achieved remarkable performance in diverse applications. Nevertheless, the substantial scale and computational intricacy limit the practical implementation of CNNs, particularly on resource- starved devices. This paper presents a compression technique based on graph structure learning (GSL) for CNNs. This method aims to capture the correlations among parameters in each neural network layer and compress the model by leveraging the strength of these correlations. Firstly, the neural network parameters are modeled as a graph structure by adopting a graph construction methodology. Subsequently, the graph is fed into a dual-branch GSL module. This module introduces a constraint that optimize and refine the original graph topology and maximize the difference in feature information obtained between the two channels. Through the process of graph learning, the existing correlations among the parameters of the CNNs are demonstrated. Finally, based on the correlations between the parameters of the CNNs, the parameters with lower relative importance are selected and the neural network parameters are compressed. The proposed method significantly reduces the parameter and floating-point computation complexity of CNNs, thereby diminishing the model’s intricacy. Furthermore, the operational efficiency of the network model is improved without compromising its prediction accuracy. The effectiveness of the proposed method is validated on the VGG-16 and ResNet-101 models. The compressed models’ accuracy, efficiency, and memory consumption are then compared with the original models to demonstrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, B., et al.: SparG: a sparse GEMM accelerator for deep learning applications. In: Meng, W., Lu, R., Min, G., Vaidya, J. (eds.) Algorithms and Architectures for Parallel Processing: 22nd International Conference, ICA3PP 2022, Copenhagen, Denmark, 10–12 October 2022, Proceedings, pp. 529–547. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22677-9_28

  2. Aktas, K., Ignjatovic, V., Ilic, D., Marjanovic, M., Anbarjafari, G.: Deep convolutional neural networks for detection of abnormalities in chest X-rays trained on the very large dataset. Signal Image Video Process. 17(4), 1035–1041 (2023). https://doi.org/10.1007/s11760-022-02309-w

    Article  Google Scholar 

  3. Atakishiyev, S., Salameh, M., Yao, H., Goebel, R.: Explainable artificial intelligence for autonomous driving: a comprehensive overview and field guide for future research directions. CoRR abs/2112.11561 (2021). https://arxiv.org/abs/2112.11561

  4. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado, USA, 27–30 November 1989], pp. 598–605. Morgan Kaufmann (1989). http://papers.nips.cc/paper/250-optimal-brain-damage

  5. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., de Freitas, N.: Predicting parameters in deep learning. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a Meeting Held 5–8 December 2013, Lake Tahoe, Nevada, United States, pp. 2148–2156 (2013). https://proceedings.neurips.cc/paper/2013/hash/7fec306d1e665bc9c748b5d2b99a6e97-Abstract.html

  6. Lin, Y., Wang, C., Chang, C., Sun, H.: An efficient framework for counting pedestrians crossing a line using low-cost devices: the benefits of distilling the knowledge in a neural network. Multim. Tools Appl. 80(3), 4037–4051 (2021). https://doi.org/10.1007/s11042-020-09276-9

    Article  Google Scholar 

  7. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)1 MB model size. CoRR abs/1602.07360 (2016). http://arxiv.org/abs/1602.07360

  8. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/forum?id=rJqFGTslg

  9. Zhang, L., Wei, W., Shi, Q., Shen, C., van den Hengel, A., Zhang, Y.: Accurate tensor completion via adaptive low-rank representation. IEEE Trans. Neural Networks Learn. Syst. 31(10), 4170–4184 (2020). https://doi.org/10.1109/TNNLS.2019.2952427

    Article  MathSciNet  Google Scholar 

  10. Kang, H.: Accelerator-aware pruning for convolutional neural networks. IEEE Trans. Circuits Syst. Video Technol. 30(7), 2093–2103 (2020). https://doi.org/10.1109/TCSVT.2019.2911674

    Article  Google Scholar 

  11. Shen, W., Wang, W., Zhu, J., Zhou, H., Wang, S.: Pruning-and quantization-based compression algorithm for number of mixed signals identification network. Electronics 12(7), 1694 (2023)

    Article  Google Scholar 

  12. Yuan, C., Agaian, S.S.: A comprehensive review of binary neural network. CoRR abs/2110.06804 (2021). https://arxiv.org/abs/2110.06804

  13. Zhao, R., et al.: Accelerating binarized convolutional neural networks with software-programmable FPGAs. In: Greene, J.W., Anderson, J.H. (eds.) Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA 2017, Monterey, CA, USA, 22–24 February 2017, pp. 15–24. ACM (2017). http://dl.acm.org/citation.cfm?id=3021741

  14. Li, E., Zeng, L., Zhou, Z., Chen, X.: Edge AI: on-demand accelerating deep neural network inference via edge computing. IEEE Trans. Wirel. Commun. 19(1), 447–457 (2020). https://doi.org/10.1109/TWC.2019.2946140

    Article  Google Scholar 

  15. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014). https://doi.org/10.5555/2627435.2670313

    Article  MathSciNet  Google Scholar 

  16. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural network. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015 December, pp. 7–12, 2015, Montreal, Quebec, Canada, pp. 1135–1143 (2015). https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html

  17. Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks. In: Xie, X., Jones, M.W., Tam, G.K.L. (eds.) Proceedings of the British Machine Vision Conference 2015, BMVC 2015, Swansea, UK, 7–10 September 2015, pp. 31.1–31.12. BMVA Press (2015). https://doi.org/10.5244/C.29.31

  18. Chen, S., Zhao, Q.: Shallowing deep networks: layer-wise pruning based on feature representations. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 3048–3056 (2019). https://doi.org/10.1109/TPAMI.2018.2874634

    Article  Google Scholar 

  19. Fiesler, E., Choudry, A., Caulfield, H.J.: Weight discretization paradigm for optical neural networks. In: Optical Interconnections and Networks, vol. 1281, pp. 164–173. SPIE (1990)

    Google Scholar 

  20. Balzer, W., Takahashi, M., Ohta, J., Kyuma, K.: Weight quantization in Boltzmann machines. Neural Netw. 4(3), 405–409 (1991). https://doi.org/10.1016/0893-6080(91)90077-I

    Article  Google Scholar 

  21. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017. Proceedings of Machine Learning Research, vol. 70, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  22. Dai, H., et al.: Adversarial attack on graph structured data. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018. Proceedings of Machine Learning Research, vol. 80, pp. 1123–1132. PMLR (2018). http://proceedings.mlr.press/v80/dai18b.html

  23. Zhu, D., Zhang, Z., Cui, P., Zhu, W.: Robust graph convolutional networks against adversarial attacks. In: Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, 4–8 August 2019, pp. 1399–1407. ACM (2019). https://doi.org/10.1145/3292500.3330851

  24. Luo, D., et al.: Learning to drop: robust graph neural network via topological denoising. In: Lewin-Eytan, L., Carmel, D., Yom-Tov, E., Agichtein, E., Gabrilovich, E. (eds.) WSDM 2021, The Fourteenth ACM International Conference on Web Search and Data Mining, Virtual Event, Israel, 8–12 March 2021, pp. 779–787. ACM (2021). https://doi.org/10.1145/3437963.3441734

  25. Newman, M.: Networks. Oxford University Press, Oxford (2018)

    Google Scholar 

  26. Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural networks. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-2018), the 30th innovative Applications of Artificial Intelligence (IAAI-2018), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-2018), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 3546–3553. AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16642

  27. Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction. Texts and Monographs in Computer Science, Springer, Cham (1985). https://doi.org/10.1007/978-1-4612-1098-6

  28. Song, L., Smola, A.J., Gretton, A., Borgwardt, K.M., Bedo, J.: Supervised feature selection via dependence estimation. In: Ghahramani, Z. (ed.) Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis, Oregon, USA, 20–24 June 2007. ACM International Conference Proceeding Series, vol. 227, pp. 823–830. ACM (2007). https://doi.org/10.1145/1273496.1273600

  29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province China (NO. ZR2020LZH008, ZR2021MF118, ZR2022LZH003), the Key R &D Program of Shandong Province, China (NO. 2021CXGC010506, NO. 2021SFGC0104) and the National Natural Science Foundation of China (NO. 62101311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangwei Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, T., Zheng, X., Zhang, L., Zhang, Y. (2024). Graph Structure Learning-Based Compression Method for Convolutional Neural Networks. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14488. Springer, Singapore. https://doi.org/10.1007/978-981-97-0801-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0801-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0800-0

  • Online ISBN: 978-981-97-0801-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics