Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Proactive Resource Allocation for Multi-stage Cloud-Native Microservices

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Abstract

Microservices deployment in the cloud often faces a prevalent challenge: how to maximize resource utilization while maintaining high quality-of-service (QoS). Existing automatic scaling tools frequently exhibit limited adaptability, particularly when handling frequent request load fluctuations, which exacerbates the challenge. To address this issue, we introduce a proactive runtime deployment optimization method for multi-stage microservices, aiming to ensure both resource efficiency and QoS.

Our proposed method encompasses four interrelated modules–forecasting, constraint planning, judgment selection, and execution–which collaboratively work towards optimizing runtime resource allocation, generating viable deployment plans, and identifying cost-efficient solutions without compromising QoS. Through a set of experiments, we demonstrate that the proposed proactive deployment optimization method can potentially reduce computational resource usage by 35% while maintaining the desired quality of service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alenizi, A., Ammar, R., Elfouly, R., Alsulami, M.: Queue analysis for probabilistic cloud workflows. In: 2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 1–6 (2020). https://doi.org/10.1109/ISSPIT51521.2020.9408967

  2. Alsarhan, A., Itradat, A., Al-Dubai, A.Y., Zomaya, A.Y., Min, G.: Adaptive resource allocation and provisioning in multi-service cloud environments. IEEE Trans. Parallel Distrib. Syst. 29(1), 31–42 (2018)

    Article  Google Scholar 

  3. Baccelli, F., Bremaud, P.: Elements of Queueing Theory. Elements of Queueing Theory (1961)

    Google Scholar 

  4. Bhardwaj, S., Sahoo, B.: A particle swarm optimization approach for cost effective saas placement on cloud. In: International Conference on Computing, Communication and Automation, ICCCA 2015, pp. 686–690 (2015). https://doi.org/10.1109/CCAA.2015.7148462

  5. Chainbi, W., Sassi, E.: A multiswarm for composite saas placement optimization based on pso. Softw.- Pract. Exp. 48(10), 1847–1864 (2018). https://doi.org/10.1002/spe.2600

    Article  Google Scholar 

  6. Chatfield, C.: The holt-winters forecasting procedure. J. Roy. Stat. Soc. 27(3), 264–279 (1978). https://doi.org/10.2307/2347162

    Article  Google Scholar 

  7. Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A.: Cloud computing: distributed internet computing for it and scientific research. IEEE Internet Comput. 13(5), 10–11 (2009). https://doi.org/10.1109/MIC.2009.103

    Article  Google Scholar 

  8. Fu, K., Zhang, W., Chen, Q., Zeng, D., Guo, M.: Adaptive resource efficient microservice deployment in cloud-edge continuum. IEEE Trans. Parallel Distrib. Syst. 33(8), 1825–1840 (2022). https://doi.org/10.1109/TPDS.2021.3128037

    Article  Google Scholar 

  9. Gan, Y., Liang, M., Dev, S., Lo, D., Delimitrou, C.: Sage: practical and scalable ml-driven performance debugging in microservices. In: International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS, pp. 135–151 (2021). https://doi.org/10.1145/3445814.3446700

  10. Gan, Y., et al.: An open-source benchmark suite for cloud and iot microservices. arXiv: 1905.11055 (2019)

  11. Gan, Y., et al.: Seer: leveraging big data to navigate the complexity of performance debugging in cloud microservices. In: International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS, pp. 19–33 (2019). https://doi.org/10.1145/3297858.3304004

  12. Gardner, E.S.: Exponential smoothing: The State of the Art-part ii. Int. J. Forecast. 22(4), 637–666 (2006)

    Article  Google Scholar 

  13. Gevros, P., Crowcroft, J.: Distributed resource management with heterogeneous linear controls. Comput. Netw. 45(6), 835–858 (2004)

    Article  Google Scholar 

  14. Gias, A.U., Casale, G., Woodside, M.: Atom: model-driven autoscaling for microservices. In: Proceedings International Conference on Distributed Computing Systems 2019, pp. 1994–2004 (2019). https://doi.org/10.1109/ICDCS.2019.00197

  15. Hajji, M.A., Mezni, H.: A composite particle swarm optimization approach for the composite saas placement in cloud environment. Soft. Comput. 22(12), 4025–4045 (2018). https://doi.org/10.1007/s00500-017-2613-8

    Article  Google Scholar 

  16. He, X., Tu, Z., Wagner, M., Xu, X., Wang, Z.: Online deployment algorithms for microservice systems with complex dependencies. IEEE Trans. Cloud Comput. (2022). https://doi.org/10.1109/TCC.2022.3161684

    Article  Google Scholar 

  17. Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S.: A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast. 18(3), 439–454 (2002)

    Article  Google Scholar 

  18. Jia, R., Yang, Y., Grundy, J., Keung, J., Li, H.: A deadline constrained preemptive scheduler using queuing systems for multi-tenancy clouds. In: IEEE International Conference on Cloud Computing, CLOUD 2019, pp. 63–67 (2019)

    Google Scholar 

  19. Kannan, R.S., Subramanian, L., Raju, A., Ahn, J., Mars, J., Tang, L.: Grandslam: guaranteeing slas for jobs in microservices execution frameworks. In: Proceedings of the 14th EuroSys Conference 2019 pp. ACM Special Interest Group on Operating Systems (SIGOPS) (2019). https://doi.org/10.1145/3302424.3303958

  20. Khazaei, H., Mii, J., Mii, V.B.: Modelling of cloud computing centers using m/g/m queues. In: Proceedings - International Conference on Distributed Computing Systems, pp. 87–92 (2011). https://doi.org/10.1109/ICDCSW.2011.13

  21. Khazaei, H., Misic, J., Misic, V.B.: Performance analysis of cloud computing centers using m/g/m/m+r queuing systems. IEEE Trans. Parallel Distrib. Syst. 23(5), 936–943 (2012)

    Article  Google Scholar 

  22. Klevans, R.L., Stewart, W.J.: From queueing networks to markov chains: the xmarca interface. Perform. Eval. 24(1–2), 23–45 (1995)

    Article  Google Scholar 

  23. Liao, W.H., Chen, P.W., Kuai, S.C.: A resource provision strategy for software-as-a-service in cloud computing. Proc. Comput. Sci. 110, 94–101 (2017). https://doi.org/10.1016/j.procs.2017.06.123

    Article  Google Scholar 

  24. Merkel, D.: Docker: lightweight linux containers for consistent development and deployment. Linux J. 2014(239) (2014). https://doi.org/10.5555/2600239.2600241

  25. Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B., De Turck, F.: Cost-effective feature placement of customizable multi-tenant applications in the cloud. J. Netw. Syst. Manage. 22(4), 517–558 (2014)

    Article  Google Scholar 

  26. Mohammadi, M., Jolai, F., Rostami, H.: An m/m/c queue model for hub covering location problem. Math. Comput. Model. 54(11–12), 2623–2638 (2011). https://doi.org/10.1016/j.mcm.2011.06.038

    Article  MathSciNet  Google Scholar 

  27. Pallis, G.: Cloud computing: the new frontier of internet computing. IEEE Internet Comput. 14(5), 70–73 (2010). https://doi.org/10.1109/MIC.2010.113

    Article  Google Scholar 

  28. Qiu, H., Banerjee, S.S., Jha, S., Kalbarczyk, Z.T., Iyer, R.K.: Firm: an intelligent fine-grained resource management framework for slo-oriented microservices. Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2020, pp. 805–825 (2020). https://doi.org/10.48550/arXiv.2008.08509

  29. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the 3rd ACM Symposium on Cloud Computing, SoCC 2012. ACM Special Interest Group on Management of Data (SIGMOD) (2012)

    Google Scholar 

  30. Tournaire, T., Castel-Taleb, H., Hyon, E., Hoche, T.: Generating optimal thresholds in a hysteresis queue: application to a cloud model. In: Proceedings - IEEE Computer Society’s Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, MASCOTS 2019, 283–294 (2019). https://doi.org/10.1109/MASCOTS.2019.00040

  31. Villamizar, M., et al.: Infrastructure cost comparison of running web applications in the cloud using aws lambda and monolithic and microservice architectures. In: Proceedings - 2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2016, pp. 179–182 (2016). https://doi.org/10.1109/CCGrid.2016.37

  32. Wada, H., Suzuki, J., Oba, K.: Queuing theoretic and evolutionary deployment optimization with probabilistic slas for service oriented clouds. In: SERVICES 2009–5th 2009 World Congress on Services (PART 1), pp. 661–669 (2009). https://doi.org/10.1109/SERVICES-I.2009.59

  33. Wang, S., Li, X., Ruiz, R.: Performance analysis for heterogeneous cloud servers using queueing theory. IEEE Trans. Comput. 69(4), 563–576 (2020). https://doi.org/10.1109/TC.2019.2956505

    Article  MathSciNet  Google Scholar 

  34. Wu, H., Sun, Y., Wolter, K.: Analysis of the energy-response time tradeoff for delayed mobile cloud offloading. Perform. Eval. Rev. 43(2), 33–35 (2015). https://doi.org/10.1145/2825236.2825251

    Article  Google Scholar 

  35. Yang, H., Chen, Q., Riaz, M., Luan, Z., Tang, L., Mars, J.: Powerchief: Intelligent power allocation for multi-stage applications to improve responsiveness on power constrained cmp. In: Proceedings - International Symposium on Computer Architecture Part F128643, pp. 133–146 (2017). https://doi.org/10.1145/3079856.3080224

  36. Zhang, Y., Hua, W., Zhou, Z., Suh, G.E., Delimitrou, C.: Sinan: Ml-based and qos-aware resource management for cloud microservices. In: International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS, pp. 167–181 (2021). https://doi.org/10.1145/3445814.3446693

  37. Zhou, H., et al.: Overload control for scaling wechat microservices. In: SoCC 2018 - Proceedings of the 2018 ACM Symposium on Cloud Computing, pp. 149–161 (2018). https://doi.org/10.1145/3267809.3267823

  38. Zhou, X., et al.: Fault analysis and debugging of microservice systems: Industrial survey, benchmark system, and empirical study. IEEE Trans. Software Eng. 47(2), 243–260 (2021). https://doi.org/10.1109/TSE.2018.2887384

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Basic Public Welfare Research Project of Zhejiang Province grant number LY20F020014 and the National Science Foundation for Young Scientists of China grant number 61802096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, P. et al. (2024). Efficient Proactive Resource Allocation for Multi-stage Cloud-Native Microservices. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14488. Springer, Singapore. https://doi.org/10.1007/978-981-97-0801-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0801-7_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0800-0

  • Online ISBN: 978-981-97-0801-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics