Abstract
Compared to static declarative knowledge, procedural knowledge is challenging to assess effectively in education due to its nature of dynamic and complex. However, it serves as a crucial source for essential abilities of students. Can artificial intelligence assist in evaluating procedural knowledge? To explore this question, we focus on the scenario of middle-school chemistry experiments and attempt to use video understanding technology to aid teachers in assessing procedural knowledge of chemistry experiments. Nevertheless, our preliminary findings reveal that chemistry experiment videos differ from typical instructional videos used in research, presenting unique characteristics and complexities. Thus, we pose a new challenge, offering novel research questions for the field of video understanding and a new perspective for leveraging artificial intelligence in modern education.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Chankseliani, M., Qoraboyev, I., et al.: Higher education contributing to local, national, and global development: new empirical and conceptual insights. High. Educ. 81(1), 109–127 (2021)
Ten Berge, T., Van Hezewijk, R.: Procedural and declarative knowledge: an evolutionary perspective. Theory Psychol. 9(5), 605–624 (1999)
Zhong, X.: Practice and exploration of formative assessment in the context of ‘double reduction’ (in Chinese). Primary Educ. Res. 08, 42–49 (2023)
Chen, H.: Study on the Evaluation Mode of “Video Recording, Late Scoring” in Junior Middle School Chemistry Experiment Operation. Hainan Normal University, Hainan (2020)
Das, P., Xu, C., et al: A thousand frames in just a few words: lingual description of videos through latent topics and sparse object stitching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2634–2641. IEEE, Piscataway (2013)
Stein, S., McKenna, S.J.: Combining embedded accelerometers with computer vision for recognizing food preparation activities. In: ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 729–738. ACM, New York (2013)
Kuehne, H., Arslan, A., Serre, T.: The language of actions: recovering the syntax and semantics of goal-directed human activities. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 780–787. IEEE, Piscataway (2014)
Gao, Y., Vedula, S.S., et al.: JHU-ISI gesture and skillassessment working set (JIGSAWS): a surgical activity dataset for human motion modeling. In: MICCAI Workshop, vol. 3, pp. 3 (2014)
Alayrac, J.B., Bojanowski, P., et al: Unsupervised learning from narrated instruction videos. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4575–4583. IEEE, Piscataway (2016)
Zhou, L., Xu, C., Corso, J.: Towards automatic learning of procedures from web instructional videos. In: AAAI Conference on Artificial Intelligence, vol. 32, pp. 7590–7598. AAAI, Mento Park (2018)
Damen, D., et al.: Scaling Egocentric Vision: The Dataset. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 753–771. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_44
Doughty, H., Damen, D., et al: Who’s better? who’s best? Pairwise deep ranking for skill determination. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6057–6066. IEEE, Piscataway (2018)
Zhukov, D., Alayrac, J.B., et al: Cross-task weakly supervised learning from instructional videos. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3537–3545. IEEE, Piscataway (2019)
Doughty, H., Mayol-Cuevas, W., et al: The pros and cons: rank-aware temporal attention for skill determination in long videos. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7862–7871. IEEE, Piscataway (2019)
Miech, A., Zhukov, D., et al: HowTo100M: learning a text-video embedding by watching hundred million narrated video clips. In: International Conference on Computer Vision, pp. 2630–2640. IEEE, Piscataway (2019)
Tang, Y., Lu, J., Zhou, J.: Comprehensive instructional video analysis: the COIN dataset and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 43(9), 3138–3153 (2020)
Ding, G., Sener, F., Yao, A.: Temporal action segmentation: an analysis of modern technique. arXiv preprint arXiv:2210.10352 (2022)
Yi, F., Wen, H., Jiang, T.: Asformer: transformer for action segmentation. arXiv preprint arXiv:2110.08568 (2021)
Behrmann, N., Golestaneh, S.A., et al.: Unified fully and timestamp supervised temporal action segmentation via sequence-to-sequence translation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13695, pp. 52–68. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19833-5_4
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China under Grant No.62377029 and the Natural Science Research of Jiangsu Higher Education Institutions of China under Grant No.22KJB520021, No.22KJB520020.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zheng, Z., Wang, B., Wang, Z., Chen, Y., Zhou, J., Kong, L. (2024). Automated Analysis of Chemistry Experiment Videos: New Challenges for Video Understanding. In: Hong, W., Kanaparan, G. (eds) Computer Science and Education. Computer Science and Technology. ICCSE 2023. Communications in Computer and Information Science, vol 2023. Springer, Singapore. https://doi.org/10.1007/978-981-97-0730-0_18
Download citation
DOI: https://doi.org/10.1007/978-981-97-0730-0_18
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0729-4
Online ISBN: 978-981-97-0730-0
eBook Packages: Computer ScienceComputer Science (R0)