Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deletion-Robust Submodular Maximization Under the Cardinality Constraint over the Integer Lattice

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14479))

Included in the following conference series:

  • 245 Accesses

Abstract

Submodular optimization is a classical problem of combinatorial optimization. The objective functions of many combinatorial optimization problems are submodular functions and they also have significant applications in real life. Since some practical problems such as budget allocations that are hard to be modeled over set functions, submodular functions over the integer lattice have been widely and intensively studied subject to various classical constraints for decades. In this paper we study the robustness of maximizing a monotone diminishing return submodular function over the integer lattice under the cardinality constraint. We propose a robustness model over the integer lattice and design algorithms under this specific model by utilizing stochastic strategy combining with binary search approach. The algorithms we designed in centralized settings can achieve a \((1/2-\delta )\)-approximation and maintain robustness against deleting any d elements adversarially. While in streaming settings the algorithms we designed can still achieve the same approximation and be robust against deleting any d elements adversarially as well.

This work was supported in part by the National Natural Science Foundation of China (11971447), and the Fundamental Research Funds for the Central Universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among channels and influencers. In: Proceedings of the 21st International Conference on World Wide Web, pp. 381–388. ACM, New York (2012)

    Google Scholar 

  2. Cunningham, W.H.: On submodular function minimization. Combinatorica 5(3), 185–192 (1985)

    Article  MathSciNet  Google Scholar 

  3. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 642–651. SIAM, Philadelphia (2001)

    Google Scholar 

  4. Feldman, M., Norouzi-Fard, A., Svensson, O., Zenklusen, R.: The one-way communication complexity of submodular maximization with applications to streaming and robustness. ACM 70(4), 1–52 (2023)

    MathSciNet  Google Scholar 

  5. Gao, H., Xu, H., Vucetic, S.: Sample efficient decentralized stochastic Frank-Wolfe methods for continuous DR-submodular Maximization. In: Proceedings of International Joint Conferences on Artificial Intelligence, pp. 3501–3507. AAAI Press, Palo Alto (2021)

    Google Scholar 

  6. Gong, S., Nong, Q., Bao, S., Fang, Q., Du, D.Z.: A fast and deterministic algorithm for knapsack-constrained monotone DR-submodular maximization over an integer lattice. J. Global Optim. 85(1), 15–38 (2023)

    Google Scholar 

  7. Ji, S., Xu, D., Li, M., Zhang, D.: Stochastic greedy algorithms for maximizing constrained submodular+ supermodular functions. Concurr. Comput. 35(17), e6575 (2023)

    Google Scholar 

  8. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inform. Process. Lett. 70(1), 39–45 (1999)

    Google Scholar 

  9. Kazemi, E., Zadimoghaddam, M., Karbasi, A.: Scalable deletion-robust submodular maximization: data summarization with privacy and fairness constraints. In: Proceedings of the 35th International Conference on Machine Learning, pp. 2544–2553. ICML, Stockholm (2018)

    Google Scholar 

  10. Kothawade, S., Beck, N., Killamsetty, K., Iyer, R.: Similar: submodular information measures based active learning in realistic scenarios. NIPS 34, 18685–18697 (2021)

    Google Scholar 

  11. Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of submodular functions. In: Proceedings of the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 912–920. ACL, Stroudsburg (2010)

    Google Scholar 

  12. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions. Math. Program. 14(1), 265–294 (1978)

    Google Scholar 

  13. Orlin, J.B., Schulz, A.S., Udwani, R.: Robust monotone submodular function maximization. Math. Program. 172(1–2), 505–537 (2018)

    Google Scholar 

  14. Queyranne, M.: Minimizing symmetric submodular functions. Math. Program. 82, 3–12 (1998)

    Article  MathSciNet  Google Scholar 

  15. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  Google Scholar 

  16. Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.: Optimal budget allocation: theoretical guarantee and efficient algorithm. In: Proceedings of the International Conference on Machine Learning, pp. 351–359. JMLR, New York (2014)

    Google Scholar 

  17. Soma, T., Yoshida, Y.: Maximizing monotone submodular functions over the integer lattice. Math. Program. 172(1–2), 539–563 (2018)

    Article  MathSciNet  Google Scholar 

  18. Yang, R., Xu, D., Guo, L., Zhang, D.: Regularized two-stage submodular maximization under streaming. Sci. China Inf. Sci. 65(4), 140602 (2022)

    Google Scholar 

  19. Zhang, Z., Guo, L., Wang, Y., Zhang, D.: Streaming algorithms for maximizing monotone DR-submodular functions with a cardinality constraint on the integer lattice. Asia. Pac. J. Oper. Res. 38(05), 2140004 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, G., Liu, B., Qiang, Y. (2024). Deletion-Robust Submodular Maximization Under the Cardinality Constraint over the Integer Lattice. In: Hà, M.H., Zhu, X., Thai, M.T. (eds) Computational Data and Social Networks. CSoNet 2023. Lecture Notes in Computer Science, vol 14479. Springer, Singapore. https://doi.org/10.1007/978-981-97-0669-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0669-3_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0668-6

  • Online ISBN: 978-981-97-0669-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics