Nothing Special   »   [go: up one dir, main page]

Skip to main content

BertTab: Table Learning with Feature Descriptions and Context

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15041))

Included in the following conference series:

  • 17 Accesses

Abstract

Tabular data is widely used as a common form of relational data in many industries where machine learning is applied, especially in finance, healthcare, and industry. However, traditional methods often do not fully consider the information embedded in the samples in the tables, including the meaning of the features themselves (column descriptions) as well as the contextual information. In this paper, we propose the BertTab model, which transforms a table sample into a sentence describing that sample by using an utterance template into which the category features of the table sample are populated. The sentences describing the sample are then converted into powerful contextual embeddings using the pre-trained Bert model. Finally, the context-embedded features are fused with the original features to obtain richer and more complete features of the sample, thus achieving higher performance. We evaluated the model on three datasets. Compared to the benchmark model, BertTab improves the AUC-ROC, AUC-PR, and accuracy by an average of 2.10, 4.43, and 0.48% on the three datasets, respectively. The ablation experiments demonstrate the positive effect of introducing category feature column descriptions and considering sample category feature contexts with the fusion of raw features on model effectiveness improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, M., Afzal, H., Majeed, A., Khan, B.: A survey of evolution in predictive models and impacting factors in customer churn. Adv. Data Sci. Adapt. Anal. 9(03), 1750007 (2017)

    Article  MathSciNet  Google Scholar 

  2. Arik, S.Ö., Pfister, T.: Tabnet: attentive interpretable tabular learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 6679–6687 (2021)

    Google Scholar 

  3. Bojer, C.S., Meldgaard, J.P.: Kaggle forecasting competitions: an overlooked learning opportunity. Int. J. Forecast. 37(2), 587–603 (2021)

    Article  Google Scholar 

  4. Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., Kasneci, G.: Deep neural networks and tabular data: a survey. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Google Scholar 

  6. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2015)

    Article  Google Scholar 

  7. Cholakov, R., Kolev, T.: The GatedTabtransformer. An enhanced deep learning architecture for tabular modeling (2022). arXiv preprint arXiv:2201.00199

  8. Clements, J.M., Xu, D., Yousefi, N., Efimov, D.: Sequential deep learning for credit risk monitoring with tabular financial data (2020). arXiv preprint arXiv:2012.15330

  9. Cox, D.R.: The regression analysis of binary sequences. J. R. Stat. Soc. Ser. B Stat Methodol. 20(2), 215–232 (1958)

    Article  MathSciNet  Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2018). arXiv preprint arXiv:1810.04805

  12. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)

    Google Scholar 

  13. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  Google Scholar 

  14. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with lstm recurrent networks. J. Mach. Learn. Res. 3, 115–143 (2002)

    Google Scholar 

  15. Gorishniy, Y., Rubachev, I., Babenko, A.: On embeddings for numerical features in tabular deep learning. Adv. Neural. Inf. Process. Syst. 35, 24991–25004 (2022)

    Google Scholar 

  16. Gorishniy, Y., Rubachev, I., Khrulkov, V., Babenko, A.: Revisiting deep learning models for tabular data. Adv. Neural. Inf. Process. Syst. 34, 18932–18943 (2021)

    Google Scholar 

  17. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: Deepfm: a factorization-machine based neural network for ctr prediction (2017). arXiv preprint arXiv:1703.04247

  18. Huang, X., Khetan, A., Cvitkovic, M., Karnin, Z.: Tabtransformer: tabular data modeling using contextual embeddings (2020). arXiv preprint arXiv:2012.06678

  19. Kadra, A., Lindauer, M., Hutter, F., Grabocka, J.: Well-tuned simple nets excel on tabular datasets. Adv. Neural. Inf. Process. Syst. 34, 23928–23941 (2021)

    Google Scholar 

  20. Kaggle: don’t get kicked (2011). https://www.kaggle.com/competitions/DontGetKicked

  21. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  22. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V 13, pp. 740–755. Springer (2014)

    Google Scholar 

  23. Pang, G., Aggarwal, C., Shen, C., Sebe, N.: Editorial deep learning for anomaly detection. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2282–2286 (2022)

    Article  MathSciNet  Google Scholar 

  24. Pang, G., Shen, C., Van Den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 353–362 (2019)

    Google Scholar 

  25. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  26. Popov, S., Morozov, S., Babenko, A.: Neural oblivious decision ensembles for deep learning on tabular data (2019). arXiv preprint arXiv:1909.06312

  27. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  28. Shwartz-Ziv, R., Armon, A.: Tabular data: deep learning is not all you need. Inf. Fusion 81, 84–90 (2022)

    Article  Google Scholar 

  29. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  30. Tianchi: Default (2021). https://tianchi.aliyun.com/dataset/107537

  31. Tianchi: Bank product (2023). https://tianchi.aliyun.com/dataset/163247

  32. Ucar, T., Hajiramezanali, E., Edwards, L.: Subtab: subsetting features of tabular data for self-supervised representation learning. Adv. Neural. Inf. Process. Syst. 34, 18853–18865 (2021)

    Google Scholar 

  33. Ulmer, D., Meijerink, L., Cinà, G.: Trust issues: uncertainty estimation does not enable reliable ood detection on medical tabular data. In: Machine Learning for Health, pp. 341–354. PMLR (2020)

    Google Scholar 

  34. Urban, C.J., Gates, K.M.: Deep learning: a primer for psychologists. Psychol. Methods 26(6), 743 (2021)

    Article  Google Scholar 

  35. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  36. Wang, S., Liu, J., Yu, G., Liu, X., Zhou, S., Zhu, E., Yang, Y., Yin, J., Yang, W.: Multiview deep anomaly detection: a systematic exploration. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  37. Zhang, Q., Cao, L., Shi, C., Niu, Z.: Neural time-aware sequential recommendation by jointly modeling preference dynamics and explicit feature couplings. IEEE Trans. Neural Netw. Learn. Syst. 33(10), 5125–5137 (2021)

    Article  MathSciNet  Google Scholar 

  38. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. (CSUR) 52(1), 1–38 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, M., An, H., Han, S., Mao, J., Jiang, Y., Wang, J. (2025). BertTab: Table Learning with Feature Descriptions and Context. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15041. Springer, Singapore. https://doi.org/10.1007/978-981-97-8795-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8795-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8794-4

  • Online ISBN: 978-981-97-8795-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics