Nothing Special   »   [go: up one dir, main page]

Skip to main content

STCTb: A Spatio-Temporal Collaborative Transformer Block for Brain Diseases Classification Using fMRI Time Series

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15045))

Included in the following conference series:

  • 28 Accesses

Abstract

Recently, functional magnetic resonance imaging (fMRI) has been employed to classify brain disorders such as Alzheimer’s disease and autism spectrum disorder. Deep learning models have made significant progress in interpreting complex neural data in the context of the evolving field of fMRI analysis. In this study, we face the substantial challenge of simultaneously processing connections between brain regions and contextual representations on different time scales. This study proposes STCTb, a spatio-temporal collaborative Transformer block structure for fMRI time series. STCTb uniquely integrates multi-scale spatiotemporal information processing and enables the collaboration of temporal and spatial features through an innovative architecture, aiming to improve the sensitivity and specificity of the model in recognizing brain activity signals. While inheriting the cascade structure of the Swin Transformer, the mechanism proposes a two-branch block structure, which achieves rich and efficient global information integration at both temporal and spatial scales. Extensive experiments on the publicly available fMRI datasets ADNI and ABIDE-I have shown that the model using STCTb exhibits significantly superior performance compared to existing methods, and this innovative approach provides valuable insights for the further development of deep learning in the field of functional data analysis of brain diseases.

Supported by Chongqing Natural Science Foundation (CSTB2022NSCQ-MSX1415) and the Ministry of Education Humanities and Social Sciences Fund (23YJAZH129).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gupta, G.L., Samant, N.P.: Current druggable targets for therapeutic control of Alzheimer’s disease. Contemp. Clin. Trials 109, 106549 (2021)

    Article  Google Scholar 

  2. Yahata, N., et al.: A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat. Commun. 7(1), 11254 (2016)

    Google Scholar 

  3. Matthews, P.M., Jezzard, P.: Functional magnetic resonance imaging. J. Neurol. Neurosurg. Psychiatr. 75(1), 6–12 (2004)

    Google Scholar 

  4. Hillman, E.M.: Coupling mechanism and significance of the bold signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014)

    Article  Google Scholar 

  5. Heinsfeld, A.S., Franco, A.R., Craddock, R.C., Buchweitz, A., Meneguzzi, F.: Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage: Clin. 17, 16–23 (2018)

    Google Scholar 

  6. Xia, L., et al.: A nested parallel multiscale convolution for cerebrovascular segmentation. Med. Phys. 48(12), 7971–7983 (2021)

    Google Scholar 

  7. Li, X., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Google Scholar 

  8. Malkiel, I., Rosenman, G., Wolf, L., Hendler, T.: Pre-training and fine-tuning transformers for fMRI prediction tasks 105. arXiv:2112.05761 (2021)

  9. Bedel, H.A., Sivgin, I., Dalmaz, O., Dar, S.U., Çukur, T.: BolT: fused window transformers for fMRI time series analysis. Med. Image Anal. 88, 102841 (2023)

    Article  Google Scholar 

  10. Qin, Z., Liu, Z., Zhu, P.: Aiding Alzheimer’s disease diagnosis using graph convolutional networks based on RS-fMRI data. In: 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–7. IEEE (2022)

    Google Scholar 

  11. Alorf, A., Khan, M.U.G.: Multi-label classification of Alzheimer’s disease stages from resting-state fMRI-based correlation connectivity data and deep learning. Comput. Biol. Med. 151, 106240 (2022)

    Article  Google Scholar 

  12. Cui, W., et al.: Personalized functional connectivity based spatio-temporal aggregated attention network for mci identification. IEEE Trans. Neural Syst. Rehabil. Eng. (2023)

    Google Scholar 

  13. Zhang, H., et al.: Classification of brain disorders in RS-fMRI via local-to-global graph neural networks. IEEE Trans. Med. Imaging 42(2), 444–455 (2022)

    Google Scholar 

  14. Kim, B.H., Ye, J.C., Kim, J.J.: Learning dynamic graph representation of brain connectome with spatio-temporal attention. Adv. Neural. Inf. Process. Syst. 34, 4314–4327 (2021)

    Google Scholar 

  15. Su, L., Wang, L., Shen, H., Feng, G., Hu, D.: Discriminative analysis of non-linear brain connectivity in schizophrenia: an fMRI study. Front. Hum. Neurosci. 7, 702 (2013)

    Article  Google Scholar 

  16. Zhao, C., Li, H., Jiao, Z., Du, T., Fan, Y.: A 3D convolutional encapsulated long short-term memory (3DConv-LSTM) model for denoising fMRI data. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII 23, pp. 479–488. Springer (2020)

    Google Scholar 

  17. Li, W., Lin, X., Chen, X.: Detecting Alzheimer’s disease based on 4D fMRI: an exploration under deep learning framework. Neurocomputing 388, 280–287 (2020)

    Article  Google Scholar 

  18. Dvornek, N.C., Li, X., Zhuang, J., Duncan, J.S.: Jointly discriminative and generative recurrent neural networks for learning from fMRI. In: Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings, vol. 10, pp. 382–390. Springer (2019)

    Google Scholar 

  19. Guo, X., Tinaz, S., Dvornek, N.C.: Characterization of early stage Parkinson’s disease from resting-state fMRI data using a long short-term memory network. Front. Neuroimaging 1, 952084 (2022)

    Article  Google Scholar 

  20. Nguyen, S., Ng, B., Kaplan, A.D., Ray, P.: Attend and decode: 4D fMRI task state decoding using attention models. In: Machine Learning for Health, pp. 267–279. PMLR (2020)

    Google Scholar 

  21. Zhang, J., Zhou, L., Wang, L., Liu, M., Shen, D.: Diffusion kernel attention network for brain disorder classification. IEEE Trans. Med. Imaging 41(10), 2814–2827 (2022)

    Article  Google Scholar 

  22. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv:2010.11929 (2020)

  23. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  24. Yang, L., Zhang, R.Y., Li, L., Xie, X.: Simam: a simple, parameter-free attention module for convolutional neural networks. In: International Conference on Machine Learning, pp. 11863–11874. PMLR (2021)

    Google Scholar 

  25. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  26. Lee, H., Kim, H.E., Nam, H.: SRM: a style-based recalibration module for convolutional neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1854–1862 (2019)

    Google Scholar 

  27. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  28. Yang, J., et al.: Focal self-attention for local-global interactions in vision transformers. arXiv:2107.00641 (2021)

  29. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)

    Article  Google Scholar 

  30. Craddock, C., et al.: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). Front. Neuroinform. 42(10.3389) (2013)

    Google Scholar 

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  32. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Google Scholar 

  33. Abraham, A., et al.: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. Neuroimage 147, 736–745 (2017)

    Google Scholar 

  34. Kam, T.E., Zhang, H., Jiao, Z., Shen, D.: Deep learning of static and dynamic brain functional networks for early mci detection. IEEE Trans. Med. Imaging 39(2), 478–487 (2019)

    Article  Google Scholar 

  35. Sarraf, S., Sarraf, A., DeSouza, D.D., Anderson, J.A., Kabia, M., Initiative, A.D.N.: OViTAD: optimized vision transformer to predict various stages of Alzheimer’s disease using resting-state fMRI and structural MRI data. Brain Sci. 13(2), 260 (2023)

    Article  Google Scholar 

  36. Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)

    Google Scholar 

  37. Dvornek, N.C., Ventola, P., Pelphrey, K.A., Duncan, J.S.: Identifying autism from resting-state fMRI using long short-term memory networks. In: Machine Learning in Medical Imaging: 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, Proceedings 8, pp. 362–370. Springer (2017)

    Google Scholar 

  38. Román, G., Pascual, B.: Contribution of neuroimaging to the diagnosis of Alzheimer’s disease and vascular dementia. Arch. Med. Res. 43(8), 671–676 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, Y., Shan, K., Li, W. (2025). STCTb: A Spatio-Temporal Collaborative Transformer Block for Brain Diseases Classification Using fMRI Time Series. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15045. Springer, Singapore. https://doi.org/10.1007/978-981-97-8499-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8499-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8498-1

  • Online ISBN: 978-981-97-8499-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics