Nothing Special   »   [go: up one dir, main page]

Skip to main content

MAGAN: Mode Information and Attention-Based GAN for Realistic Time Series Data Synthesis

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14883))

Included in the following conference series:

  • 169 Accesses

Abstract

The demand for efficient processing and analysis of time series data is growing across multiple fields, yet the diverse acquisition of such data is plagued by issues such as insufficient data volume, poor privacy, and uneven data distribution in related technological research. Time series data generation effectively addresses this issue, with Generative Adversarial Network(GAN) based models showing promising performance among existing methods. Nonetheless, these methods overall performance on fidelity issues(e.g., mode collapse, difficulty capturing long-term dependencies) is not particularly outstanding. In this paper, we propose a GAN framework known as Mode information and Attention-based Generative Adversarial Network(MAGAN) which transforms the metadata and sequential data from real data into mode information and temporal information. We employ a GAN based on a multilayer perceptron (MLP) for mode information, while a hierarchical attention network with attention mechanism for temporal information. In addition to fidelity, we evaluated MAGAN based on usefulness and diversity. Experimental results show that the proposed framework significantly outperforms state-of-the-art benchmarks on three typical real-world datasets.

Supported by the National Natural Science Foundation of China under Grant 62076027.

X. Li—Independent author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Validated data - measuring fixed broadband - eighth report (2018). https://www.fcc.gov/reports-research/reports/measuring-broadband-america/validated-data-measuring-fixed-broadband-eighth

  2. Sc2replaystats - starcraft 2 replay replay hosting/training system (2023). https://sc2replaystats.com/

  3. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisc. Rev. Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Book  Google Scholar 

  5. Bruno, N., Chaudhuri, S.: Flexible database generators. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 1097–1107 (2005)

    Google Scholar 

  6. Dintyala, P., Narechania, A., Arulraj, J.: Sqlcheck: automated detection and diagnosis of SQL anti-patterns. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 2331–2345 (2020)

    Google Scholar 

  7. Duchon, C., Hale, R.: Time Series Analysis in Meteorology and Climatology: An Introduction. John Wiley & Sons, Hoboken (2012)

    Book  Google Scholar 

  8. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633 (2017)

  9. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  10. Han, Y., et al.: Cardinality estimation in dbms: a comprehensive benchmark evaluation. arXiv preprint arXiv:2109.05877 (2021)

  11. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson education, New Delhi (2009)

    Google Scholar 

  12. Kang, Y., Hyndman, R.J., Li, F.: Gratis: generating time series with diverse and controllable characteristics. Stat. Anal. Data Mining ASA Data Sci. J. 13(4), 354–376 (2020)

    Article  MathSciNet  Google Scholar 

  13. Liang, Z., Li, S.: Tc-gan: a transformer-based conditional generative adversarial network for low-dose spect image reconstruction. In: Proceedings of the 2023 15th International Conference on Machine Learning and Computing, pp. 341–347 (2023)

    Google Scholar 

  14. Lin, Z., Jain, A., Wang, C., Fanti, G., Sekar, V.: Using gans for sharing networked time series data: challenges, initial promise, and open questions. In: Proceedings of the ACM Internet Measurement Conference, pp. 464–483 (2020)

    Google Scholar 

  15. Ma, L., et al.: Mb2: decomposed behavior modeling for self-driving database management systems. In: Proceedings of the 2021 International Conference on Management of Data, pp. 1248–1261 (2021)

    Google Scholar 

  16. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  17. Maggie, Oren Anava, V.K.W.C.: Web traffic time series forecasting (2017). https://kaggle.com/competitions/web-traffic-time-series-forecasting

  18. Marazzo, M., Scherre, R., Fernandes, E.: Air transport demand and economic growth in Brazil: a time series analysis. Transport. Res. Part E: Logist. Transport. Rev. 46(2), 261–269 (2010)

    Article  Google Scholar 

  19. McGregor, T., Alcock, S., Karrenberg, D.: The RIPE NCC internet measurement data repository. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032, pp. 111–120. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12334-4_12

    Chapter  Google Scholar 

  20. Mogren, O.: C-RNN-GAN: continuous recurrent neural networks with adversarial training. arXiv preprint arXiv:1611.09904 (2016)

  21. Norris, J.R.: Markov Chains, 2nd edn. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  22. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier gans. In: International Conference on Machine Learning, pp. 2642–2651. PMLR (2017)

    Google Scholar 

  23. Ohm, P.: Broken promises of privacy: responding to the surprising failure of anonymization. UCLA l. Rev. 57, 1701 (2009)

    Google Scholar 

  24. Remil, Y., Bendimerad, A., Mathonat, R., Chaleat, P., Kaytoue, M.: “what makes my queries slow?": subgroup discovery for SQL workload analysis. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 642–652. IEEE (2021)

    Google Scholar 

  25. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  26. Sami, M., Mobin, I.: A comparative study on variational autoencoders and generative adversarial networks. In: 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), pp. 1–5. IEEE (2019)

    Google Scholar 

  27. T., J.: Comparative study of gan and vae. Int. J. Comput. Appl. (2018). https://api.semanticscholar.org/CorpusID:53586135

  28. Xu, T., Wenliang, L.K., Munn, M., Acciaio, B.: Cot-gan: generating sequential data via causal optimal transport. Adv. Neural. Inf. Process. Syst. 33, 8798–8809 (2020)

    Google Scholar 

  29. Xuan, G., Zhang, W., Chai, P.: Em algorithms of gaussian mixture model and hidden Markov model. In: Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205), vol. 1, pp. 145–148. IEEE (2001)

    Google Scholar 

  30. Yoon, J., Jarrett, D., Van der Schaar, M.: Time-series generative adversarial networks. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  31. Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: sequence generative adversarial nets with policy gradient. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  32. Zhang, Y., et al.: Hkgb: an inclusive, extensible, intelligent, semi-auto-constructed knowledge graph framework for healthcare with clinicians’ expertise incorporated. Inf. Process. Manag. 57(6), 102324 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Luo , Peng Ren , Weifan Wang or Xianbo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. et al. (2024). MAGAN: Mode Information and Attention-Based GAN for Realistic Time Series Data Synthesis. In: Jin, C., Yang, S., Shang, X., Wang, H., Zhang, Y. (eds) Web Information Systems and Applications. WISA 2024. Lecture Notes in Computer Science, vol 14883. Springer, Singapore. https://doi.org/10.1007/978-981-97-7707-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7707-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7706-8

  • Online ISBN: 978-981-97-7707-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics