Nothing Special   »   [go: up one dir, main page]

Skip to main content

BIVXDB: A Bottom Information Invert Index to Speed up the Query Performance of LSM-Tree

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

Key-value storage systems based on LSM-trees achieve fast write performance through out-of-place updates and a hierarchical structure. However, their range query process involves filtering and sorting SSTables at each level, resulting in significant performance overhead. To enhance range query performance, we traverse all KV pairs during the SSTable creation phase when compaction, and construct an efficient global index named BIVX with LSM-tree’s bottom level’s information. BIVX allows rapid location and reading of target files during range queries, significantly improving range query performance. Based on BIVX, we developed BIVXDB and demonstrated the effectiveness of our improvements through experimental results.

This work has been partially supported by the National Science Foundation of China No. 62372450.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970). https://doi.org/10.1145/362686.362692

    Article  Google Scholar 

  2. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing - SoCC 2010, p. 143. ACM Press, Indianapolis (2010)

    Google Scholar 

  3. Dayan, N., Athanassoulis, M., Idreos, S.: Optimal bloom filters and adaptive merging for LSM-trees. ACM Trans. Database Syst. 43(4) (2018). https://doi.org/10.1145/3276980

  4. Dharmapurikar, S., Krishnamurthy, P., Taylor, D.: Longest prefix matching using bloom filters. IEEE/ACM Trans. Network. 14(2), 397–409 (2006). https://doi.org/10.1109/TNET.2006.872576

    Article  Google Scholar 

  5. Facebook: Rocksdb documentation. https://rocksdb.org.cn/ doc .html

  6. Facebook: Rocksdb tuning guide. https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

  7. Google: Leveldb documentation. https://github.com/google/leveldb/ blob/master/doc/index.md

  8. Huang, C., Hu, H., Wei, X., Qian, W., Zhou, A.: Partition pruning for range query on distributed log-structured merge-tree. Front. Comput. Sci. 14(3) (2020). https://doi.org/10.1007/s11704-019-8234-x

  9. Im, J., Bae, J., Chung, C., Arvind, Lee, S.: Design of LSM-tree-based Key-value SSDs with bounded tails. ACM Trans. Storage 17(2) (2021). https://doi.org/10.1145/3452846

  10. Kaiyrakhmet, O., Lee, S., Nam, B., Noh, S.H., Choi, Y.R.: SLM-DB: single-level key-value store with persistent memory. In: 17th USENIX Conference on File and Storage Technologies (FAST 2019), pp. 191–205. USENIX Association, Boston (2019). https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet

  11. Li, C., Chen, H., Ruan, C., Ma, X., Xu, Y.: Leveraging NVME SSDS for building a fast, cost-effective, LSM-tree-based KV store. ACM Trans. Storage 17(4) (2021). https://doi.org/10.1145/3480963

  12. Li, Y., Tian, C., Guo, F., Li, C., Xu, Y.: ElasticBF: elastic bloom filter with hotness awareness for boosting read performance in large key-value stores. In: USENIX Association, pp. 739–752 (2019)

    Google Scholar 

  13. Lu, K., Zhao, N., Wan, J., Fei, C., Zhao, W., Deng, T.: TridentKV: a read-optimized LSM-tree based KV store via adaptive indexing and space-efficient partitioning. IEEE Trans. Parallel Distrib. Syst. 33(8), 1953–1966 (2022). https://doi.org/10.1109/TPDS.2021.3118599

  14. Luo, S., Chatterjee, S., Ketsetsidis, R., Dayan, N., Qin, W., Idreos, S., Rosetta: a robust space-time optimized range filter for key-value stores. In: Association Computing Machinery, pp. 2071–2086 (2020). https://doi.org/10.1145/3318464.3389731

  15. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The log-structured merge-tree (LSM-TREE). Acta Informatica 33(4), 351–385 (1996)

    Article  Google Scholar 

  16. Sun, X., Yu, J., Zhou, Z., Xue, C.J.: FPGA-based compaction engine for accelerating LSM-tree key-value stores. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1261–1272 (2020). https://doi.org/10.1109/ICDE48307.2020.00113

  17. Wang, Y., Jin, P., Wan, S.: HotKey-LSM: a hotness-aware LSM-tree for big data storage, pp. 5849–5851 (2020). https://doi.org/10.1109/BigData50022.1010.9377736

  18. Wu, F., Yang, M., Zhang, B., Du, D.: AC-key: adaptive caching for LSM-based key-value stores. In: USENIX Association, pp. 603–615 (2020)

    Google Scholar 

  19. Yao, T., et al.: Matrixkv: reducing write stalls and write amplification in LSM-tree based KV stores with matrix container in nvm. In: the 2020 USENIX Annual Technical Conference, pp. 17–31 (2020)

    Google Scholar 

  20. Zhang, B., Du, D.H.C.: NVLSM: a persistent memory key-value store using log-structured merge tree with accumulative compaction. ACM Trans. Storage 17(3) (2021). https://doi.org/10.1145/3453300

  21. Zhang, H., et al.: Succinct range filters. ACM Trans. Database Syst. 45(2) (2020). https://doi.org/10.1145/3375660

  22. Zhong, W., Chen, C., Wu, X., Jiang, S.: REMIX: efficient range query for LSM-trees. In: USENIX Association, pp. 51–64 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, Z., Zhou, J., Fan, Z., Shan, L., Yue, Y., Song, Y. (2024). BIVXDB: A Bottom Information Invert Index to Speed up the Query Performance of LSM-Tree. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14964. Springer, Singapore. https://doi.org/10.1007/978-981-97-7241-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7241-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7240-7

  • Online ISBN: 978-981-97-7241-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics