Nothing Special   »   [go: up one dir, main page]

Skip to main content

VM-Rec: A Variational Mapping Approach for Cold-Start User Recommendation

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

The cold-start problem is a common challenge for most recommender systems. The practical application of most cold-start methods is hindered by the deficiency in auxiliary content information for users. Furthermore, most methods often require simultaneous updates to extensive parameters of recommender models, resulting in high training costs, especially in large-scale industrial scenarios. We observe that the model can generate expressive embeddings for warm users with relatively more interactions. Initially, these users were cold-start users, and after transitioning to warm users, they exhibit clustering patterns in their embeddings with consistent initial interactions. Motivated by this, we propose a Variational Mapping approach for cold-start user Recommendation (VM-Rec), mapping from few initial interactions to expressive embeddings for cold-start users. Specifically, we encode the initial interactions into a latent representation, where each dimension disentangledly signifies the degree of association with each warm user. Subsequently, we utilize this latent representation as the parameters for the mapping function, mapping (decoding) it into an expressive embedding, which can be integrated into a pre-trained recommender model directly. Our method is evaluated on three datasets, demonstrating superior performance compared to other popular cold-start methods (Code is available at https://github.com/Linan2018/VM-Rec.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/layer6ai-labs/DropoutNet

  2. 2.

    https://github.com/xuan92ta/WDoF

  3. 3.

    Figure 3a is conducted on Ali dataset for 1 shot. Figure 3b, 3c and Table 2, 3 are conducted on Movielens dataset using BPR as base model.

References

  1. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. arXiv preprint arXiv:1612.00410 (2016)

  2. Cantador, I., Brusilovsky, P., Kuflik, T.: Second workshop on information heterogeneity and fusion in recommender systems (hetrec2011). In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 387–388 (2011)

    Google Scholar 

  3. Chen, H., et al.: Generative adversarial framework for cold-start item recommendation. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2565–2571 (2022)

    Google Scholar 

  4. Dai, S., et al.: Poso: personalized cold start modules for large-scale recommender systems. arXiv preprint arXiv:2108.04690 (2021)

  5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  7. Guo, C., Berkhahn, F.: Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737 (2016)

  8. Hao, B., Zhang, J., Yin, H., Li, C., Chen, H.: Pre-training graph neural networks for cold-start users and items representation. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 265–273 (2021)

    Google Scholar 

  9. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)

    Google Scholar 

  10. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)

    Google Scholar 

  11. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  12. Kim, M., Yang, Y., Ryu, J.H., Kim, T.: Meta-learning with adaptive weighted loss for imbalanced cold-start recommendation. arXiv preprint arXiv:2302.14640 (2023)

  13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  14. Lee, H., Im, J., Jang, S., Cho, H., Chung, S.: Melu: meta-learned user preference estimator for cold-start recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1073–1082 (2019)

    Google Scholar 

  15. Liu, H., et al.: Boosting meta-learning cold-start recommendation with graph neural network. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, pp. 4105–4109 (2023)

    Google Scholar 

  16. Lu, Y., Fang, Y., Shi, C.: Meta-learning on heterogeneous information networks for cold-start recommendation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1563–1573 (2020)

    Google Scholar 

  17. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  18. Mitchell, T.J., Beauchamp, J.J.: Bayesian variable selection in linear regression. J. Am. Stat. Assoc. 83(404), 1023–1032 (1988)

    Article  MathSciNet  Google Scholar 

  19. Ouyang, W., et al.: Learning graph meta embeddings for cold-start ads in click-through rate prediction. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1157–1166 (2021)

    Google Scholar 

  20. Pan, F., Li, S., Ao, X., Tang, P., He, Q.: Warm up cold-start advertisements: improving CTR predictions via learning to learn id embeddings. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 695–704 (2019)

    Google Scholar 

  21. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

  22. Tianchi: Ad display/click data on taobao.com (2018). https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

  23. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv preprint physics/0004057 (2000)

    Google Scholar 

  24. Titsias, M., Lázaro-Gredilla, M.: Spike and slab variational inference for multi-task and multiple kernel learning. Adv. Neural Inf. Process. Syst. 24 (2011)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  26. Volkovs, M., Yu, G., Poutanen, T.: Dropoutnet: addressing cold start in recommender systems. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  27. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)

    Google Scholar 

  28. Wei, T., et al.: Fast adaptation for cold-start collaborative filtering with meta-learning. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 661–670. IEEE (2020)

    Google Scholar 

  29. Wei, Y., Wang, X., Li, Q., Nie, L., Li, Y., Li, X., Chua, T.S.: Contrastive learning for cold-start recommendation. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 5382–5390 (2021)

    Google Scholar 

  30. Wen, J., Liu, H., Jing, L.: Modeling preference as weighted distribution over functions for user cold-start recommendation. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 2706–2715. CIKM ’23 (2023)

    Google Scholar 

  31. Xu, L., et al.: Recent advances in recbole: extensions with more practical considerations (2022)

    Google Scholar 

  32. Xu, X., et al.: Alleviating cold-start problem in ctr prediction with a variational embedding learning framework. In: Proceedings of the ACM Web Conference 2022, pp. 27–35 (2022)

    Google Scholar 

  33. Yuan, F., He, X., Karatzoglou, A., Zhang, L.: Parameter-efficient transfer from sequential behaviors for user modeling and recommendation. In: Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, pp. 1469–1478 (2020)

    Google Scholar 

  34. Yuan, Z., et al.: Where to go next for recommender systems? id-vs. modality-based recommender models revisited. arXiv preprint arXiv:2303.13835 (2023)

  35. Zhao, K., Li, Y., Shuai, Z., Yang, C.: Learning and transferring ids representation in e-commerce. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1031–1039 (2018)

    Google Scholar 

  36. Zhao, X., Ren, Y., Du, Y., Zhang, S., Wang, N.: Improving item cold-start recommendation via model-agnostic conditional variational autoencoder. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2595–2600 (2022)

    Google Scholar 

  37. Zhou, Z., Zhang, L., Yang, N.: Contrastive collaborative filtering for cold-start item recommendation. arXiv preprint arXiv:2302.02151 (2023)

  38. Zhu, Y., et al.: Learning to warm up cold item embeddings for cold-start recommendation with meta scaling and shifting networks. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1167–1176 (2021)

    Google Scholar 

  39. Zhu, Z., Sefati, S., Saadatpanah, P., Caverlee, J.: Recommendation for new users and new items via randomized training and mixture-of-experts transformation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1121–1130 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyun Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, L., Chen, J., Liu, P., Zhang, G., Fang, J. (2024). VM-Rec: A Variational Mapping Approach for Cold-Start User Recommendation. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14962. Springer, Singapore. https://doi.org/10.1007/978-981-97-7235-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7235-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7234-6

  • Online ISBN: 978-981-97-7235-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics