Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Metabolic Pathway Design Method Based on Surrogate-Assisted Fireworks Algorithm

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14788))

Included in the following conference series:

  • 210 Accesses

Abstract

In recent years, synthetic biology has emerged as a transformative field combining biology and information technology principles to forge novel approaches in medicine, agriculture, and the chemical industry. Metabolic pathway design is a critical branch of synthetic biology that enables more efficient and cost-effective production of target compounds. Gibbs free energy is a crucial criterion for assessing the feasibility of a metabolic pathway. Therefore, we propose a metabolic pathway design method named FWAPathDesign, based on a surrogate-assisted Fireworks Algorithm (FWA), which can design efficient metabolic pathways. This paper uses pyruvate and vanillin as target compounds to design metabolic pathways in the experimental part. Throughout the iterative process of the algorithm, FWAPathDesign can not only find the classical metabolic pathways but also design metabolic pathways with lower Gibbs free energy. Our comprehensive experiments validate the effectiveness of FWAPathDesign and confirm its potential to impact the field of metabolic pathway design significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, H., Zeng, A.: Synthetic Biology-Metabolic Engineering. Springer Cham (2018)

    Google Scholar 

  2. Jeong, H., Tombor, B., Albert, R., et al.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  3. Wood, H.G.: Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 5(2), 156–163 (1991)

    Article  MathSciNet  Google Scholar 

  4. Chávez, S., Lucena, J.M., Reyes, J.C., Florencio, F.J., Candau, P.: The presence of glutamate dehydrogenase is a selective advantage for the Cyanobacterium synechocystis sp. strain PCC 6803 under nonexponential growth conditions. J. Bacteriol. 181(3), 808–13 (1999)

    Google Scholar 

  5. Cao, Y., Zhang, T., Zhao, X., Jia, X., Li, B.: MooSeeker: a metabolic pathway design tool based on multi-objective optimization algorithm. IEEE-ACM Trans. Comput. Biol. Bioinform. 20(6), 3609–3622 (2023)

    Article  Google Scholar 

  6. Wang, L., Upadhyay, V., Maranas, CD.: dGPredictor: Automated fragmentation method for metabolic reaction free energy prediction and de novo pathway design. Plos Comput. Biol. 17(9) (2021)

    Google Scholar 

  7. Jungnickel, D.: Graphs, networks and algorithms. Springer, Berlin, Heidelberg (2013)

    Book  Google Scholar 

  8. Mohammadi-Peyhani, H., Hafner, J., Sveshnikova, A., Viterbo, V., Hatzimanikatis, V.: ATLASx: a computational map for the exploration of biochemical space. bioRxiv (2021)

    Google Scholar 

  9. Klamt, S., Kremling, A., Gilles, E.D.: Fluxanalyzer: a graphical interface for stoichiometric and quantitative analysis of metabolic networks. IFAC Proc. 34(5), 119–124 (2001)

    Google Scholar 

  10. Lee, D.Y., Yun, H., Park, S., Lee, S.Y.: MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19(16), 2144–2146 (2003)

    Article  Google Scholar 

  11. Noor, E., Bar-Even, A., Flamholz, A., Reznik, E., Liebermeister, W., Milo, R.: Pathway thermodynamics highlights kinetic obstacles in central metabolism. Plos Comput. Biol. 10(2), (2014)

    Google Scholar 

  12. Zhao, X., Jia, X., Zhang, T., et al.: Evolutionary algorithms with blind fitness evaluation for solving optimization problems with only fuzzy fitness information. IEEE Trans. Fuzzy Syst. 31(11), 3995–4009 (2023)

    Article  Google Scholar 

  13. Zhao, X., Jia, X., Zhang, T., et al.: A supervised surrogate-assisted evolutionary algorithm for complex optimization problems. IEEE Trans. Instrum. Meas. 72, 1–14 (2023)

    Google Scholar 

  14. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 26(1), 29–41 (1996)

    Google Scholar 

  15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948, Perth, WA, Australia (1995)

    Google Scholar 

  16. Bansal, J., Sharma, H., Jadon, S.: Artificial bee colony algorithm: a survey. Int. J. Adv. Intell. Parad. 5(1), 123–159 (2013)

    Google Scholar 

  17. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C., (eds.) Advances in Swarm Intelligence. ICSI 2010, LNCS, vol 6145. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1_44

  18. Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) Advances in Swarm Intelligence. ICSI 2011. LNCS, vol 6728. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  19. Abdel-Basset, M., Mohamed, R., Sallam, K.M., Chakrabortty, R.K.: Light spectrum optimizer: a novel physics-inspired metaheuristic optimization algorithm. Mathematics 10(19), 3466 (2022)

    Article  Google Scholar 

  20. Yang, J., Cai, Y., Zhao, K., Xie, H., Chen, X.: Concepts and applications of chemical fingerprint for hit and lead screening. Drug Discovery Today 27(11), 103356 (2022)

    Article  Google Scholar 

  21. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K.: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45(D1), D353–D361 (2017)

    Article  Google Scholar 

  22. Ling, C., Peabody, GL., Salvachua, D., et al.: Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nat. Commun. 4925 (2022)

    Google Scholar 

  23. Gallage, N.J., Moeller, B.L.: Vanillin - Bioconversion and Bioengineering of the most popular plant flavour and its de novo biosynthesis in the vanilla orchid. Mol. Plant 8(1), 40–57 (2015)

    Article  Google Scholar 

  24. García-Bofill, M., Sutton, P.W., Guillén, M., Álvaro, G.: Enzymatic synthesis of vanillin catalysed by an eugenol oxidase. Appl. Catal. A 582, 117117 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X., Cui, S., Zhang, T., Cao, Y., Yang, M., Liu, W. (2024). A Metabolic Pathway Design Method Based on Surrogate-Assisted Fireworks Algorithm. In: Tan, Y., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2024. Lecture Notes in Computer Science, vol 14788. Springer, Singapore. https://doi.org/10.1007/978-981-97-7181-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7181-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7180-6

  • Online ISBN: 978-981-97-7181-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics