Abstract
In recent years, synthetic biology has emerged as a transformative field combining biology and information technology principles to forge novel approaches in medicine, agriculture, and the chemical industry. Metabolic pathway design is a critical branch of synthetic biology that enables more efficient and cost-effective production of target compounds. Gibbs free energy is a crucial criterion for assessing the feasibility of a metabolic pathway. Therefore, we propose a metabolic pathway design method named FWAPathDesign, based on a surrogate-assisted Fireworks Algorithm (FWA), which can design efficient metabolic pathways. This paper uses pyruvate and vanillin as target compounds to design metabolic pathways in the experimental part. Throughout the iterative process of the algorithm, FWAPathDesign can not only find the classical metabolic pathways but also design metabolic pathways with lower Gibbs free energy. Our comprehensive experiments validate the effectiveness of FWAPathDesign and confirm its potential to impact the field of metabolic pathway design significantly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhao, H., Zeng, A.: Synthetic Biology-Metabolic Engineering. Springer Cham (2018)
Jeong, H., Tombor, B., Albert, R., et al.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)
Wood, H.G.: Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 5(2), 156–163 (1991)
Chávez, S., Lucena, J.M., Reyes, J.C., Florencio, F.J., Candau, P.: The presence of glutamate dehydrogenase is a selective advantage for the Cyanobacterium synechocystis sp. strain PCC 6803 under nonexponential growth conditions. J. Bacteriol. 181(3), 808–13 (1999)
Cao, Y., Zhang, T., Zhao, X., Jia, X., Li, B.: MooSeeker: a metabolic pathway design tool based on multi-objective optimization algorithm. IEEE-ACM Trans. Comput. Biol. Bioinform. 20(6), 3609–3622 (2023)
Wang, L., Upadhyay, V., Maranas, CD.: dGPredictor: Automated fragmentation method for metabolic reaction free energy prediction and de novo pathway design. Plos Comput. Biol. 17(9) (2021)
Jungnickel, D.: Graphs, networks and algorithms. Springer, Berlin, Heidelberg (2013)
Mohammadi-Peyhani, H., Hafner, J., Sveshnikova, A., Viterbo, V., Hatzimanikatis, V.: ATLASx: a computational map for the exploration of biochemical space. bioRxiv (2021)
Klamt, S., Kremling, A., Gilles, E.D.: Fluxanalyzer: a graphical interface for stoichiometric and quantitative analysis of metabolic networks. IFAC Proc. 34(5), 119–124 (2001)
Lee, D.Y., Yun, H., Park, S., Lee, S.Y.: MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19(16), 2144–2146 (2003)
Noor, E., Bar-Even, A., Flamholz, A., Reznik, E., Liebermeister, W., Milo, R.: Pathway thermodynamics highlights kinetic obstacles in central metabolism. Plos Comput. Biol. 10(2), (2014)
Zhao, X., Jia, X., Zhang, T., et al.: Evolutionary algorithms with blind fitness evaluation for solving optimization problems with only fuzzy fitness information. IEEE Trans. Fuzzy Syst. 31(11), 3995–4009 (2023)
Zhao, X., Jia, X., Zhang, T., et al.: A supervised surrogate-assisted evolutionary algorithm for complex optimization problems. IEEE Trans. Instrum. Meas. 72, 1–14 (2023)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 26(1), 29–41 (1996)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948, Perth, WA, Australia (1995)
Bansal, J., Sharma, H., Jadon, S.: Artificial bee colony algorithm: a survey. Int. J. Adv. Intell. Parad. 5(1), 123–159 (2013)
Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C., (eds.) Advances in Swarm Intelligence. ICSI 2010, LNCS, vol 6145. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1_44
Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) Advances in Swarm Intelligence. ICSI 2011. LNCS, vol 6728. Springer, Berlin, Heidelberg (2011)
Abdel-Basset, M., Mohamed, R., Sallam, K.M., Chakrabortty, R.K.: Light spectrum optimizer: a novel physics-inspired metaheuristic optimization algorithm. Mathematics 10(19), 3466 (2022)
Yang, J., Cai, Y., Zhao, K., Xie, H., Chen, X.: Concepts and applications of chemical fingerprint for hit and lead screening. Drug Discovery Today 27(11), 103356 (2022)
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K.: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45(D1), D353–D361 (2017)
Ling, C., Peabody, GL., Salvachua, D., et al.: Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nat. Commun. 4925 (2022)
Gallage, N.J., Moeller, B.L.: Vanillin - Bioconversion and Bioengineering of the most popular plant flavour and its de novo biosynthesis in the vanilla orchid. Mol. Plant 8(1), 40–57 (2015)
García-Bofill, M., Sutton, P.W., Guillén, M., Álvaro, G.: Enzymatic synthesis of vanillin catalysed by an eugenol oxidase. Appl. Catal. A 582, 117117 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhao, X., Cui, S., Zhang, T., Cao, Y., Yang, M., Liu, W. (2024). A Metabolic Pathway Design Method Based on Surrogate-Assisted Fireworks Algorithm. In: Tan, Y., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2024. Lecture Notes in Computer Science, vol 14788. Springer, Singapore. https://doi.org/10.1007/978-981-97-7181-3_9
Download citation
DOI: https://doi.org/10.1007/978-981-97-7181-3_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-7180-6
Online ISBN: 978-981-97-7181-3
eBook Packages: Computer ScienceComputer Science (R0)