Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Surrogate-Assisted Multi-objective Evolutionary Algorithm Guided by Hybrid Reference Points

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14788))

Included in the following conference series:

  • 206 Accesses

Abstract

Surrogate-assisted multi-objective evolutionary algorithms show excellent performance in solving expensive multi-objective optimization problems, but most of them do not work well for discontinuities Pareto fronts(PFs). To address this problem, a surrogate-assisted multi-objective evolutionary algorithm guided by hybrid reference points is proposed in this paper. The algorithm introduces a discontinuous region boundary point identification strategy to recognize the discontinuous information of PFs and set the reference points. Moreover, a two-stage multi-reference point-assisted management strategy is developed, which enables the algorithm to obtain better performance on different irregular discontinuous PFs. Experimental results show that the algorithm outperforms comparison algorithms on most of the problems with discontinuous PFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with gaussian process model. IEEE Trans. Evol. Comput. 14, 456–474 (2010). https://doi.org/10.1109/TEVC.2009.2033671

    Article  Google Scholar 

  2. He, C., Zhang, Y., Gong, D., Ji, X.: A review of surrogate-assisted evolutionary algorithms for expensive optimization problems. Expert Syst. Appl. 217 (2023). https://doi.org/10.1016/j.eswa.2022.119495

  3. Jin, Y., Sendhoff, B.: A systems approach to evolutionary multiobjective structural optimization and beyond. IEEE Comput. Intell. Mag. 4, 62–76 (2009). https://doi.org/10.1109/MCI.2009.933094

    Article  Google Scholar 

  4. Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1, 32–49 (2011). https://doi.org/10.1016/j.swevo.2011.03.001

    Article  Google Scholar 

  5. Chugh, T., Sindhya, K., Hakanen, J., Miettinen, K.: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms. Soft. Comput. 23, 3137–3166 (2019). https://doi.org/10.1007/s00500-017-2965-0

    Article  Google Scholar 

  6. He, Z., Yen, G.G., Zhang, J.: Fuzzy-based pareto optimality for many-objective evolutionary algorithms. IEEE Trans. Evol. Comput. 18, 269–285 (2014). https://doi.org/10.1109/TEVC.2013.2258025

    Article  Google Scholar 

  7. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19, 45–76 (2011). https://doi.org/10.1162/EVCO_a_00009

    Article  Google Scholar 

  8. Qin, S., Sun, C., Zhang, G., He, X., Tan, Y.: A modified particle swarm optimization based on decomposition with different ideal points for many-objective optimization problems. Complex Intell. Syst. 6, 263–274 (2020). https://doi.org/10.1007/s40747-020-00134-7

    Article  Google Scholar 

  9. Zhan, Z.-H., et al.: Matrix-based evolutionary computation. IEEE Trans. Emerg. Top. Comput. Intell. 6, 315–328 (2022). https://doi.org/10.1109/TETCI.2020.3047410

    Article  Google Scholar 

  10. Song, Z., Wang, H., He, C., Jin, Y.: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization. IEEE Trans. Evol. Comput. 25, 1013–1027 (2021). https://doi.org/10.1109/TEVC.2021.3073648

    Article  Google Scholar 

  11. Luo, J., Gupta, A., Ong, Y.-S., Wang, Z.: Evolutionary optimization of expensive multiobjective problems with co-sub-pareto front gaussian process surrogates. IEEE Trans. Cybern. 49, 1708–1721 (2019). https://doi.org/10.1109/TCYB.2018.2811761

    Article  Google Scholar 

  12. Li, J., Wang, P., Dong, H., Shen, J., Chen, C.: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization. Knowl.-Based Syst. 242 (2022). https://doi.org/10.1016/j.knosys.2022.108416

  13. Wei, F.-F., et al.: A classifier-assisted level-based learning swarm optimizer for expensive optimization. IEEE Trans. Evol. Comput. 25, 219–233 (2021). https://doi.org/10.1109/TEVC.2020.3017865

    Article  Google Scholar 

  14. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18, 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  15. Lin, W., Lin, Q., Zhu, Z., Li, J., Chen, J., Ming, Z.: Evolutionary search with multiple utopian reference points in decomposition-based multiobjective optimization. Complexity (2019)https://doi.org/10.1155/2019/7436712

  16. Xiong, J., Wang, R., Jiang, J.: Weapon selection and planning problems using moea/d with distance-based divided neighborhoods. Complexity (2019). https://doi.org/10.1155/2019/7589760

  17. Zhou, J., Zhang, Y., Wang, J., Suganthan, P.N.: Localized constrained-domination principle for constrained multiobjective optimization. IEEE Trans. Syst. Man Cybern.-Syst. 54, 1376–1387 (2024). https://doi.org/10.1109/TSMC.2023.3324797

  18. Pan, L., He, C., Tian, Y., Su, Y., Zhang, X.: A region division based diversity maintaining approach for many-objective optimization. Integr. Comput.-Aided Eng. 24, 279–296 (2017). https://doi.org/10.3233/ICA-170542

  19. Li, X., Li, X., Wang, K.: A multi-objective evolutionary algorithm based on niche selection in solving irregular Pareto fronts. J. Intell. Fuzzy Syst. 42, 5863–5883 (2022). https://doi.org/10.3233/JIFS-212426

    Article  Google Scholar 

  20. Cheng, H., Li, L., You, L.: A weight vector adjustment method for decomposition-based multi-objective evolutionary algorithms. IEEE Access. 11, 42324–42330 (2023). https://doi.org/10.1109/ACCESS.2023.3270806

    Article  Google Scholar 

  21. Liu, Q., Jin, Y., Heiderich, M., Rodemann, T.: Surrogate-assisted evolutionary optimization of expensive many-objective irregular problems. Knowl.-based Syst. 240, (2022). https://doi.org/10.1016/j.knosys.2022.108197

  22. Namura, N.: Surrogate-assisted reference vector adaptation to various pareto front shapes for many-objective Bayesian optimization. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 901–908. IEEE (2021)

    Google Scholar 

  23. Islam, J., Nazir, A., Hossain, M.M., Alhitmi, H.K., Kabir, M.A., Jallad, A.-H.M.: A surrogate assisted quantum-behaved algorithm for well placement optimization. IEEE Access. 10, 17828–17844 (2022). https://doi.org/10.1109/ACCESS.2022.3145244

    Article  Google Scholar 

  24. Pang, L.M., Ishibuchi, H., He, L., Shang, K., Chen, L.: Hypervolume-based cooperative coevolution with two reference points for multi-objective optimization. IEEE Trans. Evol. Comput. 1 (2023). https://doi.org/10.1109/TEVC.2023.3287399

  25. Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization. IEEE Trans. Evol. Comput. 23, 74–88 (2019). https://doi.org/10.1109/TEVC.2018.2802784

    Article  Google Scholar 

  26. Tian, J., Tan, Y., Zeng, J., Sun, C., Jin, Y.: Multiobjective infill criterion driven gaussian process-assisted particle swarm optimization of high-dimensional expensive problems. IEEE Trans. Evol. Comput. 23, 459–472 (2019). https://doi.org/10.1109/TEVC.2018.2869247

    Article  Google Scholar 

  27. Knowles, J.: ParEGO: a hybrid algorithm with online landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10, 50–66 (2006). https://doi.org/10.1109/TEVC.2005.851274

    Article  Google Scholar 

  28. Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genet. Program Evolvable Mach. 6, 163–190 (2005)

    Article  Google Scholar 

  29. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999). https://doi.org/10.1109/4235.797969

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China under Grant 62273348.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxian Li .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Zhang, Y., Wang, Q., He, L., Li, H., Ye, B. (2024). A Surrogate-Assisted Multi-objective Evolutionary Algorithm Guided by Hybrid Reference Points. In: Tan, Y., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2024. Lecture Notes in Computer Science, vol 14788. Springer, Singapore. https://doi.org/10.1007/978-981-97-7181-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7181-3_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7180-6

  • Online ISBN: 978-981-97-7181-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics