Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unsupervised Extremely Low-Light Image Enhancement with a Laplacian Pyramid Network

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14869))

Included in the following conference series:

  • 332 Accesses

Abstract

Former unsupervised extremely low-light image enhancement methods suffer from two issues: semantic information loss and insufficient noise suppression. To overcome these two problems, we propose an unsupervised Extremely Low-light image enhancement via a Laplacian Pyramid Network (ELLPN). Concretely, concerning the first quandary, we propose to enforce semantic content and style constraints in the low-frequency components of the image’s Laplacian pyramid after histogram equalization, therefore realizing image enhancement. As for the second issue, a generalized denoising module is introduced to process the high-frequency components of the image’s Laplacian pyramid after histogram equalization, thus further restoring the details of the image. Extensive analytical experiments substantiate the efficacy of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bovik, Z.W.A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  2. Cai, Y., Bian, H., Lin, J., Wang, H., Timofte, R., Zhang, Y.: Retinexformer: one- stage retinex-based transformer for low-light image enhancement. arXiv preprint arXiv:2303.06705 (2023)

  3. Chen, C., Chen, Q., Do, M.N., Koltun, V.: Seeing motion in the dark. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3185–3194 (2019)

    Google Scholar 

  4. Chen, H., et al.: Masked image training for generalizable deep image denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1692–1703 (2023)

    Google Scholar 

  5. Guo, C., Li, C., Guo, J., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1780–1789 (2020)

    Google Scholar 

  6. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)

    Article  Google Scholar 

  7. Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision. arXiv preprint arXiv:1906.06972 (2019)

  8. Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)

    Article  Google Scholar 

  9. Jin, Y., Yang, W., Tan, R.T.: Unsupervised night image enhancement: when layer decomposition meets light-effects suppression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, Part XXXVII, vol. 13697, pp. 404–421. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_23

  10. Li, J., Feng, X., Hua, Z.: Low-light image enhancement via progressive-recursive network. In: IEEE Transactions on Circuits and Systems for Video Technology (2021)

    Google Scholar 

  11. Liang, D., et al.: Semantically contrastive learning for low-light image enhancement. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 1555–1563 (2022)

    Google Scholar 

  12. Liang, J., Zeng, H., Zhang, L.: High-resolution photorealistic image translation in real-time: a laplacian pyramid translation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9392– 9400 (2021)

    Google Scholar 

  13. Lu, Y., Jung, S.W.: Progressive joint low-light enhancement and noise removal for raw images. IEEE Trans. Image Process. 31, 2390–2404 (2022)

    Article  Google Scholar 

  14. Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022)

    Google Scholar 

  15. Theiss, J., Leverett, J., Kim, D., Prakash, A.: Unpaired image translation via vector symbolic architectures. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, Part XXI, vol. 13681, pp. 17–32. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19803-8_2

  16. Wang, Y., Wan, R., Yang, W., Li, H., Chau, L.P., Kot, A.: Low-light image enhancement with normalizing flow. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2604–2612 (2022)

    Google Scholar 

  17. Xu, K., Yang, X., Yin, B., Lau, R.W.: Learning to restore low-light images via decomposition-and-enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2281–2290 (2020)

    Google Scholar 

  18. Xu, W., Chen, X., Guo, H., Huang, X., Liu, W.: Unsupervised image restoration with quality-task-perception loss. IEEE Trans. Circuits Syst. Video Technol. 32(9), 5736–5747 (2022)

    Article  Google Scholar 

  19. Xu, X., Wang, R., Fu, C.W., Jia, J.: SNR-aware low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17714–17724 (2022)

    Google Scholar 

  20. Yang, W., Wang, S., Fang, Y., Wang, Y., Liu, J.: Band representation-based semi- supervised low-light image enhancement: bridging the gap between signal fidelity and perceptual quality. IEEE Trans. Image Process. 30, 3461–3473 (2021)

    Article  Google Scholar 

  21. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)

    Google Scholar 

  22. Zamir, S.W., et al.: Learning enriched features for fast image restoration and enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 1934–1948 (2022)

    Article  Google Scholar 

  23. Zhang, R., Isola, P., Efros, A.A., et al.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  24. Zheng, S., Gupta, G.: Semantic-guided zero-shot learning for low-light image/video enhancement. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 581–590 (2022)

    Google Scholar 

  25. García-Lamont, F., Cervantes, J., López-Chau, A., Ruiz, S.: Contrast enhancement of RGB color images by histogram equalization of color vectors’ intensities. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds.) ICIC 2018. LNCS, Part III, vol. 10956, pp. 443–455. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95957-3_47

Download references

Acknowledgement

This work is partly supported by National Science Foundation, China (No: 62201213) and an Open Project of the Key Laboratory of System Control and Information Processing, Ministry of Education (Shanghai JiaoTong University, ID: Scip20230105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Y., Xie, S., Xu, W. (2024). Unsupervised Extremely Low-Light Image Enhancement with a Laplacian Pyramid Network. In: Huang, DS., Chen, W., Pan, Y. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14869. Springer, Singapore. https://doi.org/10.1007/978-981-97-5603-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5603-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5602-5

  • Online ISBN: 978-981-97-5603-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics