Nothing Special   »   [go: up one dir, main page]

Skip to main content

MS-YOLOv5s: An Improved YOLOv5s for the Detection of Imperceptible Defects on Steel Surfaces

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Abstract

The detection of surface defects in steel is crucial for maintaining high product quality standards and preventing financial losses due to inferior goods. However, the subtle imperfections that escape human observation present a significant challenge to existing algorithms. In response to this pressing need, our research introduces an advanced approach, MS-YOLOv5s, designed to better distinguish between background and defects. Firstly, our study presents a new neck module, the comprehensive position feature pyramid networks (CPFPN), which improves the precision of detecting barely noticeable flaws. This is achieved by using the spatial channel attention module (SCAM) on intermediate feature maps to retain more positional information from the original image. Moreover, this innovative method adopts multi-scale learning, dynamically adjusting the input image size during training to amplify the differences between defects and background. MS-YOLOv5s achieves 80.5% and 65.7% mean average precision (mAP) respectively on the NEU-DET and GC10-DET datasets, demonstrating robust performance across various scenarios and outperforming many methods in identifying defects on the steel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu, F., Bl, B., Xl, A., Cx, A., Sc, A., Xin, Y.: Deep learning-based fast recognition of commutator surface defects. Measurement 178(8), 109324 (2021)

    Google Scholar 

  2. Lee, S.Y., Tama, B.A., Moon, S.J., Lee, S.: Steel surface defect diagnostics using deep convolutional neural network and class activation map. Appl. Sci. 9(24), 5449 (2019)

    Article  Google Scholar 

  3. Xu, Y., Li, D., Xie, Q., Wu, Q., Wang, J.: Automatic defect detection and segmentation of tunnel surface using modified mask r-cnn. Measurement 178, 109316 (2021)

    Article  Google Scholar 

  4. Tian, R., Jia, M.: DCC-Centernet: a rapid detection method for steel surface defects. Measurement 187, 110211 (2022)

    Article  Google Scholar 

  5. Li, J., Su, Z., Geng, J., Yin, Y.: Real-time detection of steel strip surface defects based on improved yolo detection network. IFAC-PapersOnLine 51(21), 76–81 (2018)

    Article  Google Scholar 

  6. Anter, A.M., Abd Elaziz, M., Zhang, Z.: Real-time epileptic seizure recognition using bayesian genetic whale optimizer and adaptive machine learning. Futur. Gener. Comput. Syst. 127, 426–434 (2022)

    Article  Google Scholar 

  7. Mandriota, C., Nitti, M., Ancona, N., Stella, E., Distante, A.: Filter-based feature selection for rail defect detection. Mach. Vis. Appl. 15, 179–185 (2004)

    Article  Google Scholar 

  8. Song, K., Yan, Y.: A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 285, 858–864 (2013)

    Article  Google Scholar 

  9. Zhou, A., Zheng, H., Li, M., Shao, W.: Defect inspection algorithm of metal surface based on machine vision. In: 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) (2020)

    Google Scholar 

  10. Jocher, G.: YOLOv5 by Ultralytics (2020). https://github.com/ultralytics/yolov5

  11. Li, C., et al.: YOLOv6: a single-stage object detection framework for industrial applications. ArXiv abs/2209.02976 (2022), https://api.semanticscholar.org/CorpusID:252110986

  12. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7464–7475 (2022), https://api.semanticscholar.org/CorpusID:250311206

  13. Li, H., Zhang, R., Pan, Y., Ren, J., Shen, F.: LR-FPN: enhancing remote sensing object detection with location refined feature pyramid network. arXiv preprint arXiv:2404.01614 (2024)

  14. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate ob-ject detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2013). https://api.semanticscholar.org/CorpusID:215827080

  15. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  16. Pingchuan, W.: Machine vision technology and nondestructive detection of the surface defects in strip steel. Nonde Structive Testing (2000)

    Google Scholar 

  17. Yao, J., et al.: NDC-Scene: boost monocular 3d semantic scene completion in normalized devicecoordinates space. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9421–9431. IEEE Computer Society (2023)

    Google Scholar 

  18. Yao, J., Pan, X., Wu, T., Zhang, X.: Building lane-level maps from aerial images. In: ICASSP 2024–2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3890–3894. IEEE (2024)

    Google Scholar 

  19. Zhao, T., Chen, X., Yang, L.: IPCA-SVM based real-time wrinkling detection approaches for strip steel production process. Int. J. Wireless Mobile Comput. 16(2), 160 (2019)

    Article  Google Scholar 

  20. Yao, J., Wu, T., Zhang, X.: Improving depth gradientcontinuity in transformers: a comparative study on monocular depth estimation with cnn. arXiv preprint arXiv:2308.08333 (2023)

  21. Fu, X., Shen, F., Du, X., Li, Z.: Bag of tricks for “vision meet alage” object detection challenge. In: 2022 6th International Conference on Universal Village (UV), pp. 1–4. IEEE (2022)

    Google Scholar 

  22. Weng, W., Wei, M., Ren, J., Shen, F.: Enhancing aerial object detection with selective frequency interaction network. IEEE Trans. Artif. Intell. 1(01), 1–12 (2024)

    Google Scholar 

  23. Qiao, C., et al.: A novel multi-frequency coordinated module for sar ship detection. In: 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 804–811. IEEE (2022)

    Google Scholar 

  24. Shen, F., Zhu, J., Zhu, X., Xie, Y., Huang, J.: Exploring spatial significance via hybrid pyramidal graph network for vehicle re-identification. IEEE Trans. Intell. Transp. Syst. 23(7), 8793–8804 (2021)

    Article  Google Scholar 

  25. Shen, F., Du, X., Zhang, L., Tang, J.: Triplet contrastive learning for unsupervised vehicle re-identification. arXiv preprint arXiv:2301.09498 (2023)

  26. Shen, F., Xie, Y., Zhu, J., Zhu, X., Zeng, H.: GiT: graph interactive transformer for vehicle re-identification. IEEE Trans. Image Process. (2023)

    Google Scholar 

  27. Weng, W., Ling, W., Lin, F., Ren, J., Shen, F.: A novel cross frequency-domain interaction learning for aerial oriented object detection. In: Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Springer (2023). https://doi.org/10.1007/978-981-99-8462-6_24

  28. Shen, F., Shu, X., Du, X., Tang, J.: Pedestrian-specific bipartite-aware similarity learning for text-based person retrieval. In: Proceedings of the 31th ACM International Conference on Multimedia (2023)

    Google Scholar 

  29. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. ArXiv abs/1807.06521 (2018). https://api.semanticscholar.org/CorpusID:49867180

  30. Zhu, C., Chen, F., Shen, Z., Savvides, M.: Soft anchor-point object detection. In: European Conference on Computer Vision (2019). https://api.semanticscholar.org/CorpusID:208512715

  31. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 6568–6577 (2019). https://api.semanticscholar.org/CorpusID:119296375

  32. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO (2023). https://github.com/ultralytics/ultralytics

  33. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 821–830 (2019). https://api.semanticscholar.org/CorpusID:102354217

  34. Li, C., Guo, J., Porikli, F., Fu, H., Pang, Y.: A cascaded convolutional neural network for single image dehazing. IEEE Access, 1 (2018)

    Google Scholar 

  35. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding YOLO series in 2021. ArXivabs/2107.08430 (2021). https://api.semanticscholar.org/CorpusID:236088010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Zhou, M., Liang, Y., Pan, W., Gao, Z. (2024). MS-YOLOv5s: An Improved YOLOv5s for the Detection of Imperceptible Defects on Steel Surfaces. In: Huang, DS., Zhang, C., Guo, J. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14871. Springer, Singapore. https://doi.org/10.1007/978-981-97-5609-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5609-4_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5608-7

  • Online ISBN: 978-981-97-5609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics