Abstract
In the current wave of digital transformation, Frequently Asked Questions (FAQ) answering systems have become a crucial technology to replace traditional manual customer service for efficiently addressing high-frequency issues. This paper focuses on two real business scenarios within the financial industry - banking and funds. We delve into and implement FAQ question-answering systems based on question semantic similarity, suitable for both cold start and domain adaptation phases. In the banking scenario, we confront the challenge of cold start problem. To mitigate the anisotropy issues associated with pre-trained models, we employ unsupervised SimCSE, which leverages dropout as data augmentation. In the fund scenario, where an ample labeled dataset is available for fine-tuning, we introduce the improved supervised CoSENT. CoSENT leverages unified optimization criteria throughout the training and prediction stages of SBERT. Experimental results indicate that CoSENT can achieve superior sentence embeddings. Starting from real-world scenarios, we propose a practical data accumulation process for FAQ question-answering systems, spanning from the cold start phase to fine-tuning domain-adapted models. In conclusion, the FAQ question-answering systems constructed in this paper can effectively adapt to the cold start and domain adaptation requirements in different business scenarios, providing valuable practical and theoretical references for enterprises in the process of digital transformation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Araci, D.: Finbert: financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063 (2019)
Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In: Advances in Neural Information Processing Systems, vol. 13 (2000)
Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
Chamekh, A., Mahfoudh, M., Forestier, G.: Sentiment analysis based on deep learning in e-commerce. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds.) KSEM 2022. LNCS, vol. 13369, pp. 498–507. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10986-7_40
Chen, J., Chen, Q., Liu, X., Yang, H., Lu, D., Tang, B.: The BQ corpus: a large-scale domain-specific Chinese corpus for sentence semantic equivalence identification. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4946–4951 (2018)
Gao, J., He, D., Tan, X., Qin, T., Wang, L., Liu, T.Y.: Representation degeneration problem in training natural language generation models. arXiv preprint arXiv:1907.12009 (2019)
Gao, T., Yao, X., Chen, D.: Simcse: simple contrastive learning of sentence embeddings. arXiv preprint arXiv:2104.08821 (2021)
Hinton, G.E., et al.: Learning distributed representations of concepts. In: Proceedings of the Eighth Annual Conference of the Cognitive Science Society, Amherst, MA, vol. 1, p. 12 (1986)
Hu, C., Xiao, K., Wang, Z., Wang, S., Li, Q.: Extracting prerequisite relations among wikipedia concepts using the clickstream data. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, S.-Y. (eds.) KSEM 2021. LNCS (LNAI), vol. 12815, pp. 13–26. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82136-4_2
Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 2333–2338 (2013)
Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, vol. 1, p. 2 (2019)
Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet Physics Doklady, Soviet Union, vol. 10, pp. 707–710 (1966)
Li, B., Zhou, H., He, J., Wang, M., Yang, Y., Li, L.: On the sentence embeddings from pre-trained language models. arXiv preprint arXiv:2011.05864 (2020)
Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26 (2013)
Nguyen, N.T.H., Ha, P.P.D., Nguyen, L.T., Van Nguyen, K., Nguyen, N.L.T.: Spbertqa: a two-stage question answering system based on sentence transformers for medical texts. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds.) KSEM 2022. LNCS, vol. 13369, pp. 371–382. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10986-7_30
Peng, S., Cui, H., Xie, N., Li, S., Zhang, J., Li, X.: Enhanced-RCNN: an efficient method for learning sentence similarity. In: Proceedings of the Web Conference 2020, pp. 2500–2506 (2020)
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)
Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)
Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning, vol. 242, pp. 29–48. Citeseer (2003)
Reimers, N., Gurevych, I.: Sentence-bert: sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019)
Robertson, S., Zaragoza, H., et al.: The probabilistic relevance framework: BM25 and beyond. Found. Trends® Inf. Retrieval 3(4), 333–389 (2009)
Su, J.: Cosent(1): a more effective sentence vector scheme than sentence bert (2022). https://kexue.fm/archives/8847
Su, J., Cao, J., Liu, W., Ou, Y.: Whitening sentence representations for better semantics and faster retrieval. arXiv preprint arXiv:2103.15316 (2021)
Sun, K., Luo, X., Luo, M.Y.: A survey of pretrained language models. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds.) KSEM 2022. LNCS, vol. 13369, pp. 442–456. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10986-7_36
Sun, Y., et al.: Circle loss: a unified perspective of pair similarity optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6398–6407 (2020)
Sun, Y., et al.: Ernie 3.0: large-scale knowledge enhanced pre-training for language understanding and generation. arXiv preprint arXiv:2107.02137 (2021)
Wang, Z., Hamza, W., Florian, R.: Bilateral multi-perspective matching for natural language sentences. arXiv preprint arXiv:1702.03814 (2017)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Hong, W., Li, J., Li, S. (2024). Financial FAQ Question-Answering System Based on Question Semantic Similarity. In: Cao, C., Chen, H., Zhao, L., Arshad, J., Asyhari, T., Wang, Y. (eds) Knowledge Science, Engineering and Management. KSEM 2024. Lecture Notes in Computer Science(), vol 14886. Springer, Singapore. https://doi.org/10.1007/978-981-97-5498-4_12
Download citation
DOI: https://doi.org/10.1007/978-981-97-5498-4_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-5497-7
Online ISBN: 978-981-97-5498-4
eBook Packages: Computer ScienceComputer Science (R0)