Nothing Special   »   [go: up one dir, main page]

Skip to main content

Financial FAQ Question-Answering System Based on Question Semantic Similarity

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14886))

  • 254 Accesses

Abstract

In the current wave of digital transformation, Frequently Asked Questions (FAQ) answering systems have become a crucial technology to replace traditional manual customer service for efficiently addressing high-frequency issues. This paper focuses on two real business scenarios within the financial industry - banking and funds. We delve into and implement FAQ question-answering systems based on question semantic similarity, suitable for both cold start and domain adaptation phases. In the banking scenario, we confront the challenge of cold start problem. To mitigate the anisotropy issues associated with pre-trained models, we employ unsupervised SimCSE, which leverages dropout as data augmentation. In the fund scenario, where an ample labeled dataset is available for fine-tuning, we introduce the improved supervised CoSENT. CoSENT leverages unified optimization criteria throughout the training and prediction stages of SBERT. Experimental results indicate that CoSENT can achieve superior sentence embeddings. Starting from real-world scenarios, we propose a practical data accumulation process for FAQ question-answering systems, spanning from the cold start phase to fine-tuning domain-adapted models. In conclusion, the FAQ question-answering systems constructed in this paper can effectively adapt to the cold start and domain adaptation requirements in different business scenarios, providing valuable practical and theoretical references for enterprises in the process of digital transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Araci, D.: Finbert: financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063 (2019)

  2. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In: Advances in Neural Information Processing Systems, vol. 13 (2000)

    Google Scholar 

  3. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  4. Chamekh, A., Mahfoudh, M., Forestier, G.: Sentiment analysis based on deep learning in e-commerce. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds.) KSEM 2022. LNCS, vol. 13369, pp. 498–507. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10986-7_40

    Chapter  Google Scholar 

  5. Chen, J., Chen, Q., Liu, X., Yang, H., Lu, D., Tang, B.: The BQ corpus: a large-scale domain-specific Chinese corpus for sentence semantic equivalence identification. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4946–4951 (2018)

    Google Scholar 

  6. Gao, J., He, D., Tan, X., Qin, T., Wang, L., Liu, T.Y.: Representation degeneration problem in training natural language generation models. arXiv preprint arXiv:1907.12009 (2019)

  7. Gao, T., Yao, X., Chen, D.: Simcse: simple contrastive learning of sentence embeddings. arXiv preprint arXiv:2104.08821 (2021)

  8. Hinton, G.E., et al.: Learning distributed representations of concepts. In: Proceedings of the Eighth Annual Conference of the Cognitive Science Society, Amherst, MA, vol. 1, p. 12 (1986)

    Google Scholar 

  9. Hu, C., Xiao, K., Wang, Z., Wang, S., Li, Q.: Extracting prerequisite relations among wikipedia concepts using the clickstream data. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, S.-Y. (eds.) KSEM 2021. LNCS (LNAI), vol. 12815, pp. 13–26. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82136-4_2

    Chapter  Google Scholar 

  10. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 2333–2338 (2013)

    Google Scholar 

  11. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, vol. 1, p. 2 (2019)

    Google Scholar 

  12. Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet Physics Doklady, Soviet Union, vol. 10, pp. 707–710 (1966)

    Google Scholar 

  13. Li, B., Zhou, H., He, J., Wang, M., Yang, Y., Li, L.: On the sentence embeddings from pre-trained language models. arXiv preprint arXiv:2011.05864 (2020)

  14. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  16. Nguyen, N.T.H., Ha, P.P.D., Nguyen, L.T., Van Nguyen, K., Nguyen, N.L.T.: Spbertqa: a two-stage question answering system based on sentence transformers for medical texts. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds.) KSEM 2022. LNCS, vol. 13369, pp. 371–382. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10986-7_30

    Chapter  Google Scholar 

  17. Peng, S., Cui, H., Xie, N., Li, S., Zhang, J., Li, X.: Enhanced-RCNN: an efficient method for learning sentence similarity. In: Proceedings of the Web Conference 2020, pp. 2500–2506 (2020)

    Google Scholar 

  18. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  19. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  20. Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning, vol. 242, pp. 29–48. Citeseer (2003)

    Google Scholar 

  21. Reimers, N., Gurevych, I.: Sentence-bert: sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019)

  22. Robertson, S., Zaragoza, H., et al.: The probabilistic relevance framework: BM25 and beyond. Found. Trends® Inf. Retrieval 3(4), 333–389 (2009)

    Google Scholar 

  23. Su, J.: Cosent(1): a more effective sentence vector scheme than sentence bert (2022). https://kexue.fm/archives/8847

  24. Su, J., Cao, J., Liu, W., Ou, Y.: Whitening sentence representations for better semantics and faster retrieval. arXiv preprint arXiv:2103.15316 (2021)

  25. Sun, K., Luo, X., Luo, M.Y.: A survey of pretrained language models. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds.) KSEM 2022. LNCS, vol. 13369, pp. 442–456. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10986-7_36

    Chapter  Google Scholar 

  26. Sun, Y., et al.: Circle loss: a unified perspective of pair similarity optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6398–6407 (2020)

    Google Scholar 

  27. Sun, Y., et al.: Ernie 3.0: large-scale knowledge enhanced pre-training for language understanding and generation. arXiv preprint arXiv:2107.02137 (2021)

  28. Wang, Z., Hamza, W., Florian, R.: Bilateral multi-perspective matching for natural language sentences. arXiv preprint arXiv:1702.03814 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxing Hong or Jun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, W., Li, J., Li, S. (2024). Financial FAQ Question-Answering System Based on Question Semantic Similarity. In: Cao, C., Chen, H., Zhao, L., Arshad, J., Asyhari, T., Wang, Y. (eds) Knowledge Science, Engineering and Management. KSEM 2024. Lecture Notes in Computer Science(), vol 14886. Springer, Singapore. https://doi.org/10.1007/978-981-97-5498-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5498-4_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5497-7

  • Online ISBN: 978-981-97-5498-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics