Abstract
The advancements in Cryo-Electron Tomography (cryo-ET) have made it possible to visualize molecules in their natural cellular settings in three-dimensional space. Such visualizations play a crucial role in investigating the functions of biological entities under native conditions. Recently, deep learning techniques have proven effective in addressing the challenge of detecting particles in cryo-ET data. Nevertheless, the task of precisely identifying and categorizing multi-class molecules remains difficult due to factors such as the low signal-to-noise ratio and the diverse range of sizes in particle selection. In this study, we present a new framework called Central Feature Network (CFN) for detecting objects in 3D and implement it in cryo-ET analysis. A key strength of CFN is its ability to integrate central features across different scales, enabling the accurate detection of both small and large molecules. In comparison to existing methods, CFN enhances the F1 score for classification by \(3.6\%\), \(7.3\%\), \(6.6\%\), and \(5.1\%\) for the four smallest molecules tested, while maintaining similar or higher F1 scores for other molecules examined. Our code is available at https://github.com/Wangyaoyuu/cfn_scr.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)
Che, C., Lin, R., Zeng, X., Elmaaroufi, K., Galeotti, J., Xu, M.: Improved deep learning-based macromolecules structure classification from electron cryo-tomograms. Mach. Vis. Appl. 29(8), 1227–1236 (2018)
Chen, M., et al.: Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14(10), 983–985 (2017)
Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)
Frangakis, A.S., et al.: Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl. Acad. Sci. 99(22), 14153–14158 (2002)
Gubins, I., et al.: SHREC 2021: classification in cryo-electron tomograms. Eurographics Workshop on 3D Object Retrieval (2021). https://doi.org/10.2312/3DOR.20211307, https://diglib.eg.org/handle/10.2312/3dor20211307
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hrabe, T., Chen, Y., Pfeffer, S., Cuellar, L.K., Mangold, A.V., Förster, F.: PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178(2), 177–188 (2012)
Ioannou, Y., Robertson, D., Cipolla, R., Criminisi, A.: Deep Roots: improving CNN efficiency with hierarchical filter groups. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1231–1240 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, G., Niu, T., Qiu, M., Zhu, Y., Sun, F., Yang, G.: DeepETPicker: fast and accurate 3D particle picking for cryo-electron tomography using weakly supervised deep learning. Nat. Commun. 15(1), 2090 (2024)
Min, Y., Liu, S., Lou, C., Cui, X.: Learning protein structural fingerprints under the label-free supervision of domain knowledge. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 69–74. IEEE (2018)
Moebel, E., et al.: Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nat. Methods 18(11), 1386–1394 (2021)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Reva, B.A., Finkelstein, A.V., Skolnick, J.: What is the probability of a chance prediction of a protein structure with an rmsd of 6 å? Fold Des. 3(2), 141–147 (1998)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Tolstikhin, I.O., et al.: MLP-mixer: an all-MLP architecture for vision. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Xu, M., et al.: Deep learning-based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms. Bioinformatics 33(14), i13–i22 (2017)
Yang, Z., Zhang, F., Han, R.: Self-supervised cryo-electron tomography volumetric image restoration from single noisy volume with sparsity constraint. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4056–4065 (2021).https://doi.org/10.1109/ICCV48922.2021.00402
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Zhang, C., et al.: TransPicker: a transformer-based framework for particle picking in cryoEM micrographs. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1179–1184. IEEE (2021)
Zhang, R., Zhu, F., Liu, J., Liu, G.: Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis. IEEE Trans. Inf. Forensics Secur. 15, 1138–1150 (2019)
Zhidong, Y., Dawei, Z., Hongjia, L., Zhao, Z., Fa, Z., Renmin, H.: Self-supervised noise modeling and sparsity guided electron tomography volumetric image denoising. Ultramicroscopy 255, 113860 (2024). https://doi.org/10.1016/j.ultramic.2023.113860
Zhou, B., Yu, H., Zeng, X., Yang, X., Zhang, J., Xu, M.: One-shot learning with attention-guided segmentation in cryo-electron tomography. Front. Mol. Biosciences, 473 (2021)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)
Acknowledgments
This research was supported by the National Key Research and Development Program of China [2021YFF0704300], the National Science Foundation of China grant (No. 61932018, 62072441, 32241027, 62072283).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, Y., Wan, X., Chen, C., Zhang, F., Cui, X. (2024). Central Feature Network Enables Accurate Detection of Both Small and Large Particles in Cryo-Electron Tomography. In: Peng, W., Cai, Z., Skums, P. (eds) Bioinformatics Research and Applications. ISBRA 2024. Lecture Notes in Computer Science(), vol 14954. Springer, Singapore. https://doi.org/10.1007/978-981-97-5128-0_17
Download citation
DOI: https://doi.org/10.1007/978-981-97-5128-0_17
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-5127-3
Online ISBN: 978-981-97-5128-0
eBook Packages: Computer ScienceComputer Science (R0)