Nothing Special   »   [go: up one dir, main page]

Skip to main content

Human Facial Age Group Recognizer Using Assisted Bottleneck Transformer Encoder

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2024)

Abstract

Recognizing age from facial images has attracted considerable attention because of its wide array of applications and practical utilities. These include support for advertising platforms, access control, forensic objectives, and video surveillance. Efficient facial age recognition for these varied purposes is essential, necessitating smooth operation on low-cost devices or, at the very least, on a CPU to minimize implementation costs. This work proposes a lightweight CNN architecture efficiently integrated with a transformer encoder to perform facial age group recognition. An assisted bottleneck transformer encoder (ABTE) is introduced to enhance the feature extractor, generating only a few parameters and requiring low computation. As a result, the proposed architecture can achieve competitive performance on the two benchmark datasets, UTKFace and FG-NET. Moreover, this recognizer can attain real-time speed at 147 and 136 frames per second (FPS) with a single and double utilization of the ABTE, respectively, on a CPU device with Intel Core i7-9750H 2.6 GHz and 20 GB of RAM while maintaining its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badr, M.M., Elbasiony, R.M., Sarhan, A.M.: Lrti: landmark ratios with task importance toward accurate age estimation using deep neural networks. Neural Comput. Appl. 34(12), 9647–9659 (2022)

    Article  Google Scholar 

  2. Becerra-Riera, F., Morales-González, A., Méndez-Vázquez, H.: A survey on facial soft biometrics for video surveillance and forensic applications. Artif. Intell. Rev. 52(2), 1155–1187 (2019)

    Article  Google Scholar 

  3. Berg, A., Oskarsson, M., O’Connor, M.: Deep ordinal regression with label diversity. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 2740–2747. IEEE (2021)

    Google Scholar 

  4. Cao, W., Mirjalili, V., Raschka, S.: Rank consistent ordinal regression for neural networks with application to age estimation. Pattern Recogn. Lett. 140, 325–331 (2020)

    Article  Google Scholar 

  5. Chen, G., Peng, J., Wang, L., Yuan, H., Huang, Y.: Feature constraint reinforcement based age estimation. Multimedia Tools Appl. 82(11), 17033–17054 (2023)

    Article  Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Gupta, S.K., Nain, N.: Single attribute and multi attribute facial gender and age estimation. Multimedia Tools Appl. 82(1), 1289–1311 (2023)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE (2016)

    Google Scholar 

  9. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2019)

    Article  Google Scholar 

  10. Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002)

    Article  Google Scholar 

  11. Li, W., Lu, J., Feng, J., Xu, C., Zhou, J., Tian, Q.: Bridgenet: a continuity-aware probabilistic network for age estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1145–1154 (2019)

    Google Scholar 

  12. Liu, H., Lu, J., Feng, J., Zhou, J.: Label-sensitive deep metric learning for facial age estimation. IEEE Trans. Inf. Forensics Secur. 13(2), 292–305 (2017)

    Article  Google Scholar 

  13. Mai, A.T., Nguyen, D.H., Dang, T.T.: Real-time age-group and accurate age prediction with bagging and transfer learning. In: 2021 International Conference on Decision Aid Sciences and Application (DASA), pp. 27–32. IEEE (2021)

    Google Scholar 

  14. Priadana, A., Putro, M.D., An, J., Nguyen, D.L., Vo, X.T., Jo, K.H.: Gender recognizer based on human face using cnn and bottleneck transformer encoder. In: 2023 International Workshop on Intelligent Systems (IWIS), pp. 1–6. IEEE (2023)

    Google Scholar 

  15. Priadana, A., Putro, M.D., Nguyen, D.L., Vo, X.T., Jo, K.H.: Age group recognizer based on human face supporting smart digital advertising platforms. In: 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE), pp. 1–7. IEEE (2023)

    Google Scholar 

  16. Priadana, A., Putro, M.D., Vo, X.T., Jo, K.H.: An efficient face-based age group detector on a CPU using two perspective convolution with attention modules. In: 2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6. IEEE (2022)

    Google Scholar 

  17. Putro, M.D., Nguyen, D.L., Jo, K.H.: Lightweight convolutional neural network for real-time face detector on CPU supporting interaction of service robot. In: 2020 13th International Conference on Human System Interaction (HSI), pp. 94–99. IEEE (2020)

    Google Scholar 

  18. Savchenko, A.V.: Efficient facial representations for age, gender and identity recognition in organizing photo albums using multi-output convnet. PeerJ Comput. Sci. 5, e197 (2019)

    Article  Google Scholar 

  19. Shen, W., Guo, Y., Wang, Y., Zhao, K., Wang, B., Yuille, A.: Deep differentiable random forests for age estimation. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 404–419 (2019)

    Article  Google Scholar 

  20. Shin, N.H., Lee, S.H., Kim, C.S.: Moving window regression: a novel approach to ordinal regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18760–18769 (2022)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  22. Suman, S., Urolagin, S.: Age gender and sentiment analysis to select relevant advertisements for a user using CNN. In: Jacob, I.J., Shanmugam, S.K., Bestak, R. (eds.) Data Intelligence and Cognitive Informatics: Proceedings of ICDICI 2021, pp. 543–557. Springer, Heidelberg (2022). https://doi.org/10.1007/978-981-16-6460-1_42

    Chapter  Google Scholar 

  23. Taheri, S., Toygar, Ö.: On the use of dag-cnn architecture for age estimation with multi-stage features fusion. Neurocomputing 329, 300–310 (2019)

    Article  Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  25. Wang, C., Li, Z., Mo, X., Tang, X., Liu, H.: Exploiting unfairness with meta-set learning for chronological age estimation. IEEE Trans. Inf. Forensics Secur. 18, 5678–5690 (2023)

    Article  Google Scholar 

  26. Wang, H., Sanchez, V., Li, C.T.: Improving face-based age estimation with attention-based dynamic patch fusion. IEEE Trans. Image Process. 31, 1084–1096 (2022)

    Article  Google Scholar 

  27. Xia, M., Zhang, X., Weng, L., Xu, Y., et al.: Multi-stage feature constraints learning for age estimation. IEEE Trans. Inf. Forensics Secur. 15, 2417–2428 (2020)

    Article  Google Scholar 

  28. Yu, W., Zhou, P., Yan, S., Wang, X.: Inceptionnext: when inception meets convnext. arXiv preprint arXiv:2303.16900 (2023)

  29. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4352–4360. IEEE (2017)

    Google Scholar 

Download references

Acknowledgment

This result was supported by “Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2021RIS-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanghyun Jo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Priadana, A., Nguyen, DL., Vo, XT., Jo, K. (2024). Human Facial Age Group Recognizer Using Assisted Bottleneck Transformer Encoder. In: Irie, G., Shin, C., Shibata, T., Nakamura, K. (eds) Frontiers of Computer Vision. IW-FCV 2024. Communications in Computer and Information Science, vol 2143. Springer, Singapore. https://doi.org/10.1007/978-981-97-4249-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-4249-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-4248-6

  • Online ISBN: 978-981-97-4249-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics