Nothing Special   »   [go: up one dir, main page]

Skip to main content

Minor Object Recognition from Drone Image Sequence

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2024)

Abstract

Object detection in drone imagery is an interesting topic in the Computer Vision field. This work was widely applied in traffic analysis and control, rescue systems, smart agriculture, etc. However, many challenges exist in developing and optimizing applications because of object density, multi-scale objects, and blur motion. To partly solve the above problems, this research focuses on improving the performance of the YOLOv5m network based on the advantages of the Bi-directional Feature Pyramid Network (BiFPN), Transformer, and Convolutional Block Attention Module (CBAM). The experiments achieve 68.6% and 42.6% of mAP on the proposed datasets (ISLab-Drone) and VisDrone 2021, respectively. That demonstrates the outperformance of the network comparable to other networks under the same testing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng, S., et al.: A global-local self-adaptive network for drone-view object detection. IEEE Trans. Image Process. 30, 1556–1569 (2021). https://doi.org/10.1109/TIP.2020.3045636

    Article  MathSciNet  Google Scholar 

  2. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. CoRR abs/2010.11929 (2020). https://arxiv.org/abs/2010.11929

  3. Duan, C., Wei, Z., Zhang, C., Qu, S., Wang, H.: Coarse-grained density map guided object detection in aerial images. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 2789–2798 (2021). https://doi.org/10.1109/ICCVW54120.2021.00313

  4. Gu, J., Su, T., Wang, Q., Du, X., Guizani, M.: Multiple moving targets surveillance based on a cooperative network for multi-UAV. IEEE Commun. Mag. 56(4), 82–89 (2018). https://doi.org/10.1109/MCOM.2018.1700422

    Article  Google Scholar 

  5. Hird, J.N., et al.: Use of unmanned aerial vehicles for monitoring recovery of forest vegetation on petroleum well sites. Remote Sens. 9(5) (2017). https://doi.org/10.3390/rs9050413. https://www.mdpi.com/2072-4292/9/5/413

  6. Huang, Y., Chen, J., Huang, D.: UFPMP-Det: toward accurate and efficient object detection on drone imagery. CoRR abs/2112.10415 (2021). https://arxiv.org/abs/2112.10415

  7. Jocher, G., et al.: ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improvements (2020). https://doi.org/10.5281/zenodo.4154370

  8. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics yolov8 (2023). https://github.com/ultralytics/ultralytics

  9. Kellenberger, B., Volpi, M., Tuia, D.: Fast animal detection in UAV images using convolutional neural networks. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 866–869 (2017).https://doi.org/10.1109/IGARSS.2017.8127090

  10. Li, C., Yang, T., Zhu, S., Chen, C., Guan, S.: Density map guided object detection in aerial images. CoRR abs/2004.05520 (2020). https://arxiv.org/abs/2004.05520

  11. Lin, H., Zhou, J., Gan, Y., Vong, C.M., Liu, Q.: Novel up-scale feature aggregation for object detection in aerial images. Neurocomputing 411, 364–374 (2020). https://doi.org/10.1016/j.neucom.2020.06.011

    Article  Google Scholar 

  12. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. CoRR abs/1803.01534 (2018). http://arxiv.org/abs/1803.01534

  13. Mittal, P., Sharma, A., Singh, R., Dhull, V.: Dilated convolution based RCNN using feature fusion for low-altitude aerial objects. Expert Syst. Appl. 199, 117106 (2022). https://doi.org/10.1016/j.eswa.2022.117106

    Article  Google Scholar 

  14. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. CoRR abs/1506.02640 (2015). http://arxiv.org/abs/1506.02640

  15. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. CoRR abs/1612.08242 (2016). http://arxiv.org/abs/1612.08242

  16. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR abs/1804.02767 (2018). http://arxiv.org/abs/1804.02767

  17. Ringwald, T., Sommer, L., Schumann, A., Beyerer, J., Stiefelhagen, R.: UAV-net: a fast aerial vehicle detector for mobile platforms. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 544–552 (2019). https://doi.org/10.1109/CVPRW.2019.00080

  18. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. CoRR abs/1911.09070 (2019). http://arxiv.org/abs/1911.09070

  19. Woo, S., Park, J., Lee, J., Kweon, I.S.: CBAM: convolutional block attention module. CoRR abs/1807.06521 (2018). http://arxiv.org/abs/1807.06521

  20. Yang, F., Fan, H., Chu, P., Blasch, E., Ling, H.: Clustered object detection in aerial images. CoRR abs/1904.08008 (2019). http://arxiv.org/abs/1904.08008

  21. Yu, W., Yang, T., Chen, C.: Towards resolving the challenge of long-tail distribution in UAV images for object detection. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 3257–3266 (2021). https://doi.org/10.1109/WACV48630.2021.00330

  22. Zhang, J., Huang, J., Chen, X., Zhang, D.: How to fully exploit the abilities of aerial image detectors. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 1–8 (2019).https://doi.org/10.1109/ICCVW.2019.00007

  23. Zhang, R., Newsam, S., Shao, Z., Huang, X., Wang, J., Li, D.: Multi-scale adversarial network for vehicle detection in UAV imagery. ISPRS J. Photogramm. Remote. Sens. 180, 283–295 (2021). https://doi.org/10.1016/j.isprsjprs.2021.08.002

    Article  Google Scholar 

  24. Zhao, Q., Liu, B., Lyu, S., Wang, C., Zhang, H.: TPH-YOLOv5++: boosting object detection on drone-captured scenarios with cross-layer asymmetric transformer. Remote Sens. 15(6) (2023). https://doi.org/10.3390/rs15061687. https://www.mdpi.com/2072-4292/15/6/1687

  25. Zhu, P., et al.: Detection and tracking meet drones challenge. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7380–7399 (2021). https://doi.org/10.1109/TPAMI.2021.3119563

    Article  Google Scholar 

  26. Zhu, X., Lyu, S., Wang, X., Zhao, Q.: Tph-yolov5: improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. CoRR abs/2108.11539 (2021). https://arxiv.org/abs/2108.11539

Download references

Acknowledgement

This result was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE)(2021RIS-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Hyun Jo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, DL., Vo, XT., Priadana, A., Jo, KH. (2024). Minor Object Recognition from Drone Image Sequence. In: Irie, G., Shin, C., Shibata, T., Nakamura, K. (eds) Frontiers of Computer Vision. IW-FCV 2024. Communications in Computer and Information Science, vol 2143. Springer, Singapore. https://doi.org/10.1007/978-981-97-4249-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-4249-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-4248-6

  • Online ISBN: 978-981-97-4249-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics