Nothing Special   »   [go: up one dir, main page]

Skip to main content

Explicit and Implicit Counterfactual Data Augmentation for Sequential Recommendation

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15392))

Included in the following conference series:

  • 88 Accesses

Abstract

Existing counterfactual data augmentation methods for sequential recommendation only consider users’ implicit feedback for generating augmented counterfactual samples, while the explicit feedback is ignored. Therefore, we propose an Explicit and Implicit Counterfactual data Augmentation algorithm for Sequential Recommendation (EI-CASR) to address this issue. Our algorithm takes into account both explicit and implicit feedback information of users. By learning the logical inverse (NOT) operation, neural logical reasoning can model explicit feedback in sequential learning, thus making it possible to conduct counterfactual reasoning over users’ explicit feedback to generate explicit counterfactual samples for data augmentation. At the same time, the implicit sampler generates implicit counterfactual samples by replacing historical items of user interaction. Two sets of augmented training samples, together with the original training samples, can help improve the recommendation performance by generating synthetic data to cover the unexplored input space. Experimental results on three public datasets demonstrate that EI-CASR significantly improves the performance of sequential recommendation tasks and effectively addresses the data sparsity problem commonly encountered in sequential recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasnejad, E., Teney, D., Parvaneh, A., Shi, J., Hengel, A.v.d.: Counterfactual vision and language learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10044–10054 (2020)

    Google Scholar 

  2. Bian, S., Zhao, W.X., Wang, J., Wen, J.R.: A relevant and diverse retrieval-enhanced data augmentation framework for sequential recommendation. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management. pp. 2923–2932 (2022)

    Google Scholar 

  3. Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. pp. 75–84 (2022)

    Google Scholar 

  4. Chen, H., Shi, S., Li, Y., Zhang, Y.: Neural collaborative reasoning. In: Proceedings of the Web Conference 2021. pp. 1516–1527 (2021)

    Google Scholar 

  5. Chen, S., Peng, Y.: Matrix factorization for recommendation with explicit and implicit feedback. Knowl.-Based Syst. 158, 109–117 (2018)

    Article  Google Scholar 

  6. Chen, X., Wang, Z., Xu, H., Zhang, J., Zhang, Y., Zhao, W.X., Wen, J.R.: Data augmented sequential recommendation based on counterfactual thinking. IEEE Transactions on Knowledge and Data Engineering (2022)

    Google Scholar 

  7. Cheng, M., Liu, Z., Liu, Q., Ge, S., Chen, E.: Towards automatic discovering of deep hybrid network architecture for sequential recommendation. In: Proceedings of the ACM Web Conference 2022. pp. 1923–1932 (2022)

    Google Scholar 

  8. Fu, T.-J., Wang, X.E., Peterson, M.F., Grafton, S.T., Eckstein, M.P., Wang, W.Y.: Counterfactual Vision-and-Language Navigation via Adversarial Path Sampler. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 71–86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_5

    Chapter  Google Scholar 

  9. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. Acm transactions on interactive intelligent systems (tiis) 5(4), 1–19 (2015)

    Google Scholar 

  10. He, R., McAuley, J.: Fusing similarity models with markov chains for sparse sequential recommendation. In: 2016 IEEE 16th international conference on data mining (ICDM). pp. 191–200. IEEE (2016)

    Google Scholar 

  11. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

  12. Jiang, S., Chu, Y., Wang, Z., Ma, T., Wang, H., Lu, W., Zang, T., Wang, B.: Explainable text classification via attentive and targeted mixing data augmentation. In: International Joint Conference on Artificial Intelligence (2023)

    Google Scholar 

  13. Kang, W.C., McAuley, J.: Self-attentive sequential recommendation. In: 2018 IEEE international conference on data mining (ICDM). pp. 197–206. IEEE (2018)

    Google Scholar 

  14. Li, Y., Chen, T., Zhang, P.F., Yin, H.: Lightweight self-attentive sequential recommendation. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management. pp. 967–977 (2021)

    Google Scholar 

  15. Li, Y., Luo, Y., Zhang, Z., Sadiq, S., Cui, P.: Context-aware attention-based data augmentation for poi recommendation. In: 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW). pp. 177–184. IEEE (2019)

    Google Scholar 

  16. Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H.: Stamp: short-term attention/memory priority model for session-based recommendation. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. pp. 1831–1839 (2018)

    Google Scholar 

  17. Liu, Z., Fan, Z., Wang, Y., Yu, P.S.: Augmenting sequential recommendation with pseudo-prior items via reversely pre-training transformer. In: Proceedings of the 44th international ACM SIGIR conference on Research and development in information retrieval. pp. 1608–1612 (2021)

    Google Scholar 

  18. Ni, J., Li, J., McAuley, J.: Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP). pp. 188–197 (2019)

    Google Scholar 

  19. Ni, S., Zhou, W., Wen, J., Hu, L., Qiao, S.: Enhancing sequential recommendation with contrastive generative adversarial network. Information Processing & Management 60(3), 103331 (2023)

    Article  Google Scholar 

  20. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized markov chains for next-basket recommendation. In: Proceedings of the 19th international conference on World wide web. pp. 811–820 (2010)

    Google Scholar 

  21. Shi, S., Chen, H., Ma, W., Mao, J., Zhang, M., Zhang, Y.: Neural logic reasoning. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. pp. 1365–1374 (2020)

    Google Scholar 

  22. Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., Jiang, P.: Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer. In: Proceedings of the 28th ACM international conference on information and knowledge management. pp. 1441–1450 (2019)

    Google Scholar 

  23. Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolutional sequence embedding. In: Proceedings of the eleventh ACM international conference on web search and data mining. pp. 565–573 (2018)

    Google Scholar 

  24. Wang, Z., Zhang, J., Xu, H., Chen, X., Zhang, Y., Zhao, W.X., Wen, J.R.: Counterfactual data-augmented sequential recommendation. In: Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval. pp. 347–356 (2021)

    Google Scholar 

  25. Xiong, K., Ye, W., Chen, X., Zhang, Y., Zhao, W.X., Hu, B., Zhang, Z., Zhou, J.: Counterfactual review-based recommendation. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management. pp. 2231–2240 (2021)

    Google Scholar 

  26. Yang, M., Dai, Q., Dong, Z., Chen, X., He, X., Wang, J.: Top-n recommendation with counterfactual user preference simulation. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management. pp. 2342–2351 (2021)

    Google Scholar 

  27. Zhang, S., Yao, D., Zhao, Z., Chua, T.S., Wu, F.: Causerec: Counterfactual user sequence synthesis for sequential recommendation. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 367–377 (2021)

    Google Scholar 

  28. Zhao, W.X., Chen, J., Wang, P., Gu, Q., Wen, J.R.: Revisiting alternative experimental settings for evaluating top-n item recommendation algorithms. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. pp. 2329–2332 (2020)

    Google Scholar 

  29. Zhou, K., Wang, H., Zhao, W.X., Zhu, Y., Wang, S., Zhang, F., Wang, Z., Wen, J.R.: S3-rec: Self-supervised learning for sequential recommendation with mutual information maximization. In: Proceedings of the 29th ACM international conference on information & knowledge management. pp. 1893–1902 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Liu, X., Xing, Z., Cao, J., He, T., Huang, X. (2025). Explicit and Implicit Counterfactual Data Augmentation for Sequential Recommendation. In: Sheng, Q.Z., et al. Advanced Data Mining and Applications. ADMA 2024. Lecture Notes in Computer Science(), vol 15392. Springer, Singapore. https://doi.org/10.1007/978-981-96-0850-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0850-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0849-2

  • Online ISBN: 978-981-96-0850-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics