Nothing Special   »   [go: up one dir, main page]

Skip to main content

AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2024 (WISE 2024)

Abstract

Cyber-attack attribution is an important process that allows experts to put in place attacker-oriented countermeasures and legal actions. The analysts mainly perform attribution manually, given the complex nature of this task. AI and, more specifically, Natural Language Processing (NLP) techniques can be leveraged to support cybersecurity analysts during the attribution process. However powerful these techniques may be, they must address the lack of datasets in the attack attribution domain. In this work, we will fill this gap and will provide, to the best of our knowledge, the first dataset on cyber-attack attribution. We designed our dataset with the primary goal of extracting attack attribution information from cybersecurity texts, utilizing named entity recognition (NER) methodologies from the field of NLP. Unlike other cybersecurity NER datasets, ours offers a rich set of annotations with contextual details, including some that span phrases and sentences. We conducted extensive experiments and applied NLP techniques to demonstrate the dataset’s effectiveness for attack attribution. These experiments highlight the potential of Large Language Models (LLMs) capabilities to improve the NER tasks in cybersecurity datasets for cyber-attack attribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://zenodo.org/records/10276922.

  2. 2.

    https://huggingface.co/Cyber-ThreaD.

  3. 3.

    https://github.com/codelucas/newspaper.

  4. 4.

    https://www.crummy.com/software/BeautifulSoup/.

  5. 5.

    https://prodi.gy/.

  6. 6.

    https://spacy.io/usage/training.

  7. 7.

    https://github.com/huggingface/transformers/blob/main/examples/pytorch/token-classification/run_ner.py.

  8. 8.

    https://huggingface.co/meta-llama/Llama-2-7b-hf.

  9. 9.

    https://mistral.ai/.

  10. 10.

    https://platform.openai.com/docs/models/gpt-3-5-turbo.

  11. 11.

    All LLM models use the same prompt, with only syntactical differences for GPT-3.5.

References

  1. Alam, M.T., Bhusal, D., Park, Y., Rastogi, N.: Cyner: a python library for cybersecurity named entity recognition. arXiv preprint arXiv:2204.05754 (2022)

  2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. NAACL-HLT 1, 4171–4186 (2019)

    Google Scholar 

  3. Evangelatos, P., et al.: Named entity recognition in cyber threat intelligence using transformer-based models. In: 2021 IEEE CSR, pp. 348–353 (2021)

    Google Scholar 

  4. Gasmi, H., Bouras, A., Laval, J.: LSTM recurrent neural networks for cybersecurity named entity recognition. ICSEA 11, 2018 (2018)

    Google Scholar 

  5. Gasmi, H., Laval, J., Bouras, A.: Information extraction of cybersecurity concepts: an LSTM approach. Appl. Sci. 9(19), 3945 (2019)

    Article  Google Scholar 

  6. Gill, D.K., Karafili, E.: A novel ontology for cyber-attack attribution and investigation (2024)

    Google Scholar 

  7. Joshi, A., Lal, R., Finin, T., Joshi, A.: Extracting cybersecurity related linked data from text. In: 2013 IEEE ICSC, pp. 252–259 (2013)

    Google Scholar 

  8. Karafili, E., Cristani, M., Viganò, L.: A formal approach to analyzing cyber-forensics evidence. In: ESORICS 2018, 23rd European Symposium on Research in Computer Security, vol. 11098, pp. 281–301 (2018)

    Google Scholar 

  9. Karafili, E., Kakas, A.C., Spanoudakis, N.I., Lupu, E.C.: Argumentation-based security for social good. In: AAAI Fall Symposium Series; 2017 AAAI Fall Symposium Series, pp. 164–170 (2017)

    Google Scholar 

  10. Karafili, E., Wang, L., Kakas, A.C., Lupu, E.: Helping forensic analysts to attribute cyber-attacks: an argumentation-based reasoner. In: 21st International Conference on Principles and Practice of Multi-agent Systems (PRIMA), pp. 510–518 (2018)

    Google Scholar 

  11. Karafili, E., Wang, L., Lupu, E.C.: An argumentation-based reasoner to assist digital investigation and attribution of cyber-attacks. Forens. Sci. Int.: Digit. Invest. 32, 300925 (2020). https://doi.org/10.1016/j.fsidi.2020.300925

    Article  Google Scholar 

  12. Lyu, K., Zhao, H., Gu, X., Yu, D., Goyal, A., Arora, S.: Keeping LLMs aligned after fine-tuning: The crucial role of prompt templates. arXiv preprint arXiv:2402.18540 (2024)

  13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Information Processing Systems. 26 (2013)

    Google Scholar 

  14. Mulwad, V., Li, W., Joshi, A., Finin, T., Viswanathan, K.: Extracting information about security vulnerabilities from web text. In: 2011 IEEE/WIC/ACM WI-IAT, vol. 3, pp. 257–260 (2011)

    Google Scholar 

  15. Perry, L., Shapira, B., Puzis, R.: No-doubt: attack attribution based on threat intelligence reports. In: 2019 IEEE ISI, pp. 80–85 (2019)

    Google Scholar 

  16. Rasga, J., Sernadas, C., Karafili, E., Viganò, L.: Time-stamped claim logic. Logic J. IGPL (2019)

    Google Scholar 

  17. Rid, T., Buchanan, B.: Attributing cyber attacks. J. Strateg. Stud. 38(1–2), 4–37 (2015)

    Article  Google Scholar 

  18. Sarker, I.H., Furhad, M.H., Nowrozy, R.: AI-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Comput. Sci. 2, 1–18 (2021)

    Article  Google Scholar 

  19. Shafee, S., Bessani, A., Ferreira, P.M.: Evaluation of LLM chatbots for osint-based cyberthreat awareness. arXiv preprint arXiv:2401.15127 (2024)

  20. Tikhomirov, M., Loukachevitch, N., Sirotina, A., Dobrov, B.: Using bert and augmentation in named entity recognition for cybersecurity domain. In: NLDB, pp. 16–24 (2020)

    Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  22. Wang, S., et al.: Gpt-ner: named entity recognition via large language models. arXiv preprint arXiv:2304.10428 (2023)

  23. Wang, X., et al.: Aptner: a specific dataset for NER missions in cyber threat intelligence field. In: IEEE CSCWD, pp. 1233–1238 (2022)

    Google Scholar 

  24. Wang, X., et al.: Dnrti: a large-scale dataset for named entity recognition in threat intelligence. In: IEEE TrustCom (2020)

    Google Scholar 

  25. Wheeler, D.A., Larsen, G.N.: Techniques for cyber attack attribution. In: Institute for Defense Analysis, p. 2 (2003)

    Google Scholar 

  26. Würsch, M., Kucharavy, A., Percia David, D., Mermoud, A.: LLM-based entity extraction is not for cybersecurity. EEKE2023 3451, 26–32 (2023)

    Google Scholar 

  27. Yim, W.W., Denman, T., Kwan, S.W., Yetisgen, M.: Tumor information extraction in radiology reports for hepatocellular carcinoma patients. AMIA Summits Transl. Sci. Proc. 2016, 455 (2016)

    Google Scholar 

  28. Zhang, Z., Zhao, Y., Gao, H., Hu, M.: LinkNER: linking local named entity recognition models to large language models using uncertainty. Proc. ACM Web Conf. 2024, 4047–4058 (2024)

    Google Scholar 

Download references

Acknowledgement

Research funded by the University of Southampton on behalf of the Defence Science and Technology Laboratory (Dstl) which is an executive agency of the UK Ministry of Defence providing world class expertise and delivering cutting-edge science and technology for the benefit of the nation and allies. The research supports the Autonomous Resilient Cyber Defence (ARCD) project within the Dstl Cyber Defence Enhancement programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erisa Karafili .

Editor information

Editors and Affiliations

Appendices

A Appendix A

Other sources from where we collected our data include BleepingComputer, HexaCorn, SentinelOne, CrowdStrike, Reuters, Att, Kaspersky, Webroot, Welivesecurity, Virusbulletin, Tadviser, Forumspb, Netresec, Brighttalk, Libevent, Fortinet, Microsoft, Washingtonpost, Reversemode, Viasat, Wikipedia, Wired, Cisa, Airforcemag, Businesswire, Cyberuk, Proofpoint, Fb, Withsecure, Techcrunch, Mozilla, Humansecurity, Nist, Intel471, Morphisec, Payplug, Sophos, Coretech, Stratixsystems, Crayondata, Medium, Cybergeeks, Gridinsoft, Securin, Rsisecurity, ITgovernance, DigitalGuardian, IronNet, ThreatConnect, ProtectUK, Forbes.

B Appendix B

Table 6 presents the prompt template for Llama-2 zero-shot learning.

Table 6. LLM prompt template used for base (zero-shot learning) models

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deka, P., Rajapaksha, S., Rani, R., Almutairi, A., Karafili, E. (2025). AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset. In: Barhamgi, M., Wang, H., Wang, X. (eds) Web Information Systems Engineering – WISE 2024. WISE 2024. Lecture Notes in Computer Science, vol 15440. Springer, Singapore. https://doi.org/10.1007/978-981-96-0576-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0576-7_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0575-0

  • Online ISBN: 978-981-96-0576-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics